
Vol:.(1234567890)

CCF Transactions on High Performance Computing (2020) 2:332–347
https://doi.org/10.1007/s42514-020-00044-7

1 3

REGULAR PAPER

Survey and design of paleozoic: a high‑performance compiler tool
chain for deep learning inference accelerator

Zihan Liu1 · Jingwen Leng1 · Guandong Lu1 · Chenhui Wang1 · Quan Chen1 · Minyi Guo1

Received: 20 March 2020 / Accepted: 17 July 2020 / Published online: 6 October 2020
© China Computer Federation (CCF) 2020

Abstract
Specialized hardware accelerators for deep learning are widely introduced by many hardware vendors because of their high
performance and efficiency. However, different vendors adopt different accelerator architectures, making it challenging for
the compiler tool-chain to generate and optimize high-performance codes. Moreover, the current tool-chains provided by the
vendors are either highly abstract, which makes it hard to optimize or contain too many hardware-related details, which makes
it inconvenient to program. So, in this paper, we propose a middle layer compiler tool-chain for Cambricon MLU-100 to fill
the gap between high-level runtime library and low operator-level SDK. Our tool-chain is based on the operator level SDK
but abstracts away its redundant initialization and allocation statement. We also expose the interface of major optimization
knobs compared to the existing runtime, thus enabling a considerable optimization space. We evaluate our work by several
state-of-the-art neural networks and choose the line of code and optimization knobs as evaluation metrics. We also compare
the performance against state-of-the-art tool-chain TensorRT applying simple optimization strategy and find that our work
has great potential in optimization. Our work can guarantee the user a vast optimization space with only around 20% amount
of the codes that hides the redundant initialization and allocation statements from users.

Keywords Deep learning accelerator · Compiler tool-chain · Hardware-related optimization

1 Introduction

1.1 Deep learning accelerator

With the evolution of computing power, computation intense
deep learning has been increasingly applied in the key appli-
cation domains, including computer vision, natural language

processing, etc. Nowadays, conventional general-purpose
processors like CPU/GPU can hardly meet the growing need
in computation power. On the other hand, the computation
patterns in deep learning are good candidates for hardware
specialization. There exist a few kinds of patterns in a deep
neural network, including convolution, pooling, activation,
batch normalization, and fully connected layers. These cal-
culations are mostly based on linear calculation, with con-
junctions of linear transformations, matrix decomposition,
etc. The general-purpose CPUs that adopt deep and com-
plex pipelines are highly inefficient in this scenario. Since
the linear calculation deals with a huge amount of data, the
optimal memory hierarchy is also different. So, increas-
ing vendors are releasing their own specialized accelera-
tors (Jouppi et al. 2017; Zhang et al. 2016; Marchisio et al.
2019), and these accelerators have superior performance and
energy efficiency in deep learning tasks, these specialized
accelerators also have simpler and more diverse architec-
tures than the general-purpose processor, as well as differ-
ent memory subsystems. Meanwhile, in addition to these
specialized-designed accelerators, increasing researchers
focus on accelerator architecture with better universality for

 * Jingwen Leng
 leng-jw@cs.sjtu.edu.cn

 * Minyi Guo
 guo-my@cs.sjtu.edu.cn

 Zihan Liu
 altair.liu@sjtu.edu.cn

 Guandong Lu
 lugu0525@sjtu.edu.cn

 Chenhui Wang
 wang-chen-hui@sjtu.edu.cn

 Quan Chen
 chen-quan@cs.sjtu.edu.cn

1 Shanghai Jiao Tong University, Shanghai 200240, China

http://orcid.org/0000-0003-0034-2302
http://crossmark.crossref.org/dialog/?doi=10.1007/s42514-020-00044-7&domain=pdf

333Survey and design of paleozoic: a high-performance compiler tool chain for deep learning…

1 3

scalar, vector, matrix and tensor computation instead of only
focusing on convolution (Guo et al. 2020), which also bring
challenges to compiler design.

1.2 Compiler tool‑chain

The significant difference in the architecture and memory
hierarchy leads to great challenges in code scheduling and
generation, instruction selection, memory accessing on
the specialized hardware. Currently, most of the compiler
tool-chains are designed for CPU/GPU, causing difficul-
ties in achieving the maximal efficiency of the specialized
hardware. Though researchers also try to extend the exist-
ing tool-chain for better task scheduling on heterogene-
ous architecture, including Laius (Zhang et al. 2019) and
Ebird (Cui et al. 2019), the overhead of these methods is
higher than compiler level optimization. On the other hand,
the existing neural network accelerators are based on differ-
ent architectures, ranging from systolic array (Quinton 1994)
to dot-product unit (Chen et al. 2014, 2014; Liu et al. 2015),
bringing significant challenges to the compiler tool-chain
design. Currently, the hardware vendors provide their own
compiler tool-chains, including TensorRT (NVIDIA Corp
2020) of NVIDIA Corp., Cambricon Neuware (Cambricon
Technologies 2019b) from Cambricon Technologies, etc.
However, how to deal with diverse hardware architectures
remains an open question. Moreover, when it comes to the
optimization of deep neural networks, very few vendors give
the source code and algorithms to the users, making the opti-
mization process a black box. Given that some vendors may
provide some low-level SDK of their hardware, these tools
are highly hardware-related, making it hard for users with
little hardware knowledge.

1.3 Optimization space

The challenges in compiler tool-chain also reflect on the
optimization of neural network tasks. There are two stages
in a deep neural network application: training and inference,
where the optimization methodology is different too. In this
research, we mainly focus on the inference process. In the
inference process, we mainly want the higher throughput
(FPS) and lower power consumption. To satisfy the demand
in throughput, researchers propose several optimization
knobs, including sparsity, precision-accuracy trade-off,
operation fusion/concatenation, etc. We mainly introduce
the mentioned factors.

For sparsity, from the introduction of AlexNet (Kriz-
hevsky et al. 2012), the networks apply the DropOut technol-
ogy to eliminate in-active neurons in a network to simplify
the structure of the network. This technology is aiming to
relieve the accuracy drop caused by over-fitting, and sparsity
is the side-product of this technology. The sparsity of the

network significantly reduces the demands in data transfer-
ring and computation power. Currently, some sparse version
state-of-the-art neural networks cost only 10%–20% compu-
tation count comparing to the original version. The sparsity
mentioned previously is called static sparsity, and most of
them are sparsity of weight/bias matrix, which can be deter-
mined before the network running. Another sparsity is called
dynamic sparsity (Zhou et al. 2018), which is introduced by
the wide application of ReLU activation function, which
generates many zeros when the network is running, and the
position of 0 depends on every specific input, which can
not be determined in advance. The sparsity of the network
brings the problem of irregularity, which means the accel-
erators have difficulty in determining the exact position of 0
to skip. If not well processed, to find the 0 and skip may even
introduce extra overhead results in an overall performance
drop. For compiler tool-chain, how to deal with the irregu-
larity brought by sparsity has yet to be solved.

For accuracy, in the training process, there exist many
no-linear calculations related to the gradient. Since the gra-
dient may be very small or big when training the network,
low precision may result in a great decrease in classification
accuracy. However, in the inference process, since all the
weight/bias are fixed, accuracy drop brought by proper pre-
cision cutting may be acceptable for only 1% or 2%. Actu-
ally, there are several methods to decrease the precision,
including simply casting FP32 to FP16, quantizing to INT8/
INT4 (Dong et al. 2019), etc. The problem is how to deter-
mine the proper precision that will not result in unacceptable
accuracy drop, which is a trade-off between precision and
final classification accuracy.

The operator fusion and concatenation are widely used
in the current compiler tool-chain provided by various ven-
dors (NVIDIA Corp 2020; Cambricon Technologies 2019b).
Given 2 layers with data dependency, fusion means omit-
ting the intermediate output of prior layers, thus reducing
the data movement of intermediate results (Wang et al.
2010; Filipovic 2015). However, the absence of intermedi-
ate results inevitably introduces redundant calculation. For
example, there is an overlapping area in 2D sliding window
convolution that will be computed multiple times (Ragan-
Kelley et al. 2013; Alwani et al. 2016). So, operator fusion is
also a trade-off between reduced memory access and redun-
dant computation. On the other hand, operator concatena-
tion is the optimization between 2 layers/kernel without
data dependency. By concatenation, the overhead of kernel
launch can be reduced considerably, and the computational
intensity can be increased too.

1.4 Contributions

In this work, we perform a survey on current specialized
deep learning accelerators and their compiler tool-chain. We

334 Z. Liu et al.

1 3

find that currently, it is difficult for users to customize their
inference sessions to achieve better performance on target
platforms. The vendors either abstract all the details mak-
ing it unavailable for users to research or expose too many
redundant operations, making it inconvenient to code and
optimize. So, choosing Cambricon MLU-100 as our target
platform, we introduce another abstract layer that hides the
redundant operation like initialization, memory allocation,
but exposes the optimization interface. Out abstract layer
exposes a huge optimization space with only 20% amount
of code, and this abstract layer has a tiny influence on the
performance compared to the original tool-chain.

2 How to program deep learning
applications

In this section, we introduce current frameworks for deploy-
ing a deep learning service on various platforms. It should
be noted that what the programmers do in deep-learning
training and deep-learning inference is quite different, and
we mainly focus on deep-learning inference.

2.1 Training vs inference

Training in supervised machine learning means adjusting
the human-constructed mathematical model by feeding the
pair of input and correct output data, which enable the model
to match the correct mathematical distribution as close as
possible. In detail, the initialized model calculates the output
of current input, compare the output with correct output,
and adjust the model with mathematical methods. Inference
in machine learning means calculating the output of an
unknown input given the trained mathematical model. Obvi-
ously, the training process includes the inference process,
and there is a significant difference in computational char-
acteristics. Most of the computation in the inference process
is the linear calculation, but a huge amount of non-linear
calculation related to gradient exists in the training process.

Moreover, the programming model of training and infer-
ence is quite different. When programming the training ses-
sion, programmers mainly care about how to construct a
model with higher accuracy, which means they may adjust
the structure of the model repeatedly, introduce the new
type of computation, change the hyper-parameter setting,
etc. They care less about the model optimization, execu-
tion on ending hardware, and actual deployment. They can
choose whatever system with strong computational power
and train the network. So, they need the programming model
with high-level hardware abstract, but convenient to invoke
the operator and adjust the parameter settings. If possible, a
higher flexibility for newly introduced operators is preferred.
However, when programming the inference session, the

structures of the model are fixed, programmers are mostly
not allowed to adjust the model, and generally, the target
platform is fixed in advance. So, the programmers should
care about the actual executing time, power consumption,
throughput, stability, etc., on actual hardware, which means
the optimization is highly hardware-related, as shown in
Fig. 1. This means they need the programming model to
give enough hardware specifications, characteristics, in other
words, enough optimization space so that they can optimize
the trained model for specific hardware and reach the peak
speed, stability on the target platform.

In this paper, we mainly focus on the technologies in the
inference stage.

2.2 Problem of network format

Currently, there are many kinds of deep learning frameworks
for training and inferencing, including TensorFlow, PyTorch,
MXNet, Caffe (Jain et al. 2019; MXNet 2020; Jia et al. 2014),
etc. For training, researchers choose the frameworks to fit
their coding habit, and different frameworks produce net-
work files in different formats, as listed in Table 1.

However, things get complicated in the inference (deploy-
ing) stage. For example, the frameworks based on Python
like TensorFlow, PyTorch are quite convenient for coding
but inferior in executing speed. The frameworks based on
C++ like Caffe have great executing performance but hard
to configure, coding. This introduces a great gap between
academia and industry. Typically, the company should
reconstruct a state-of-the-art network originally written
in Python to C++, and this is a time costing process. The
Open Neural Network eXchange (ONNX) format addresses
this problem. Currently, the providers of the frameworks
integrate conversion APIs for the users, supporting them to
convert network specification files into ONNX file, mak-
ing it easier for deployment. Currently, various frameworks,
including PyTorch, TensorFlow, Caffe, MXNet, CNTK,
Chainer, PaddlePaddle, support converting between ONNX
format (ONNX 2020). So, in this research, we directly use
ONNX as our standard, bypassing the problem of the diver-
sity of frameworks.

2.3 Programming interface in inference

As mentioned previously, the inference is strongly related to
actual hardware. So, the hardware vendors provide their own
interface for users. For example, Google provided a series
of commands for users to access their cloud TPU, support-
ing users to upload the models and get the output of TPU,
as shown in Fig. 2. NVIDIA also provided TensorRT with
C++ API for users to load the models and execute the infer-
ence session, as shown in Fig. 3. However, these front-ends
of existing tool-chain for inference sessions do not support

335Survey and design of paleozoic: a high-performance compiler tool chain for deep learning…

1 3

many hardware-related optimization knobs. They simply
load a network specification file, parse it and execute it, and
users get the output directly from their input, and this is
convenient for end-users but challenging for optimization.

2.4 Optimizer in inference

Given the fact that end-user can not efficiently optimize the
performance, the power consumption of the inference ses-
sion run on the specific hardware, these hardware vendors
provide their own built-in optimizer to leverage the advan-
tage of the hardware. For example, the TensorRT conduct
tensor and layer fusion/concatenation, kernel auto-tuning,
memory allocation, etc. by their own algorithm (NVIDIA
Corp 2020), as shown in Fig. 4. Among these optimiza-
tions, there are hardware-related parts, including memory
allocation, tensor layout transformation. However, most of

A Neural Network

Input Label

Output Label

Loss

CPU, GPU, FPGA, ASIC, ... (Any computation

resource available to researchers)

A Neural Network

Input

Output

Result send to

users

 Cloud Server

Xeon,TPU,

Tesla V100, Tesla

T4, ...

...

...

Embedding System

FPGA,Tegra,

Cortex,...

Training Inference

Fig. 1 Training vs inference (Copeland 2020)

Table 1 Difference of frameworks

Framework Language File Format

TensorFlow Python .pb
PyTorch Python .pkl
Caffe C++ .caffemodel
MXNet Python .json .params
CNTK Python .model

Fig. 2 Cloud TPU usage

336 Z. Liu et al.

1 3

the vendors do not expose their optimization algorithms or
strategies, a lot of libraries, SDKs with high performance
are well-tuned by a lot of human experts manually with
considerable human input parameters. The details are not
available to end-users. Besides, the vendors conduct deep
optimization toward their own products with different algo-
rithms, which brings significant challenges in universality
to the tool-chain design.

2.5 Cambricon MLU‑100 and Software

In this paper, we use Cambricon-MLU100 and correspond-
ing tool-chain, SDK, to study for a better way to program
and optimize the inference session on specialized hardware.
Cambricon MLU-100 is a dedicated deep learning accel-
erator designed by Cambricon Technologies, the chip sup-
port inference task. The hardware specifications are listed
in Table 2.

Along with the hardware, the vendor also provides us
with 2 sets of tool-chain. One is a high-level runtime library,
and another is the operator-level SDK. The programming
interface of the high-level runtime library is similar to TPU/
GPU mentioned before, as shown in Fig. 5 (The format of
network file in cnrtLoadModel should be .cambri-
con, which can be converted from other format like .pb/.
caffemodel/.pkl by provided script).

However, the operator-level SDK supports common
operators such as convolution, ReLU, vector scaling, Batch
Normalization, etc., and in this research, we will mainly use
operator-level to implement and optimize our tool-chain.

3 Why our tool‑chain necessary?

Although there are already a runtime library and an opera-
tor-level SDK to program the Cambricon MLU-100, many
problems still exist in this model from actual performance
to optimization, making it necessary to develop a tool-chain
with acceptable performance, flexibility to optimize and con-
venience to program.

3.1 Performance

Currently, the provided runtime library called Cambricon
Neuware RunTime supports the networks generated by vari-
ous frameworks. By receiving the network specification file
in various formats as input, CNRT packs them into .cambri-
con file, load, and extract the interface function in the model
and conduct the inference. However, as the selected standard
of our research, network in ONNX format experience a sig-
nificant performance gap against networks in other formats,
as shown in Fig. 6.

The inference performance of network files in ONNX
file is lower than the performance of other frameworks,

Fig. 3 TensorRT usage

Trained Neural Network

(Network structure and

weight, bias, etc.)

Optimization Process

Layer & Tensor

Fusion

Precision Adjust

Tensor Memory

Allocating

Kernel Auto-

Tuning

Multi-Stream

Execution

Optimized Inference

Session

Fig. 4 TensorRT workflow (NVIDIA Corp 2020)

Table 2 The MLU100 hardware specification

Item Descriptions

Core freq. 1GHz
Float perf. (FP16) 64 TFLOPS
Integer perf. (INT8) 128 TOPS
Memory size 8 GB
Memory bandwidth 102.4 GB/s
Memory bit width 256-bit
Host Interface PCIe 3.0x16
TDP 110 W
ECC Enabled Yes

337Survey and design of paleozoic: a high-performance compiler tool chain for deep learning…

1 3

and since the runtime library abstracts all the detailed
implementation, it’s hard to analyze the reason for the per-
formance gap and optimize it. As our assumption, since
all the networks are packed into .cambricon format in
advance, the gap between ONNX and other framework
results from different translation and scheduling process.
With the ability to access lower-level SDK, we should
make up this gap.

3.2 Programming interface

As mentioned before, the provided runtime library is highly
abstracted, leaving almost no optimization space to the user.
Though with the provided operator-level SDK, user can con-
trol the behavior of the hardware at operator level and adjust
the hyper settings include sparse mode, fusion scheme, core
to use, etc. when constructing a network, this SDK con-
tains many fragmented codes for configuring the device,
allocating the memory, initializing the stream, setting the
timer, etc., as shown in Fig. 7 which account for executing
a convolution operator. Most of the code account for pre-
running work, only line 28-30 account for actual inference.
This annoys the programmer much when they want to build
a network since many of the work is redundant. The work
done from line 1–25 can be abstracted to a more convenient
interface. It should be noted that currently, we are not able
to program new operators given the existing SDKs.

Under this circumstance, we want to develop a set of tool-
chain with the proper balance between high-level abstract
and low-level hardware specification, giving enough opti-
mization space to the user with the convenience of program-
ming guaranteed.

3.3 Optimization

To optimize the neural network inference, programmers
mainly devote their effort in reducing the kernel launch,
off-chip memory access to increase the FPS, and decrease
the power consumption. The provided runtime library and
operator-level SDK also provide some optimization knobs.
However, they are not very convenient and flexible to use.

The optimization knobs provided by runtime library only
contain binary selection between fusion/not fusion, sparse/

Fig. 5 CNRT usage

Fig. 6 Performance of various supported frameworks

338 Z. Liu et al.

1 3

not sparse. Moreover, once the choice has been made, the
runtime library packs the original network specification file
in other formats into .cambricon format with the selected
setting, which means this static selection can not be changed
once the network file is packed, which is not flexible enough.
The algorithm of fusion/sparse optimization is also unavail-
able, making it barely impossible to do further optimization
on the provided runtime library.

On the other hand, the optimization knobs provided by
the operator-level SDK include detailed fusion schemes,
selection of core to use (Model_Parallelism), spar-
sity, how to fuse layers (Fusion Scheme), etc., some of them
are hardware-related optimization knob. Fusion scheme
and Model_Parallelism are focused on in our imple-
mented tool-chain. However, to program and optimize on the
original operator-level is also not very convenient because
of many redundant statements as Figure 8 illustrated, line
19-28 are responsible for configurations of fusion operator,
which can be abstracted.

So, it is necessary to develop a tool-chain with a proper
balance between software abstract and hardware specifica-
tion, by which programmer can optimize the inference ses-
sion more convenient. Moreover, the principle for optimiza-
tion is also necessary to guide the user on how to optimize
the inference session on the hardware.

4 Our approach: Paleozoic

In this research, we develop the tool-chain named Paleozoic,
stands for the lower but wider level of Cambrian in geo-
logical time. Our work is based on higher-level IR (ONNX)
and lower-level IR (operator description), the tool-chain
will generate C++ code based on using operator-level SDK
directly from a network specification file in ONNX format,
by which an inference session can be compiled by g++.
Moreover, we integrate some optimization knobs support-
ing the user to conveniently optimize the inference session
using their own findings, algorithm, etc. Figure 9 illustrate
the structure of our research.

4.1 Front‑end

Our front-end is mainly responsible for parsing the network
specification file into low lever operator descriptions in
which it can match the interface of provided operator-level
SDK.

First, our front-end only receive the network speci-
fication file in ONNX format, and the user can convert
network specification files in other framework using the
built-in API. Currently, most of the frameworks support

Fig. 7 Code segment of running a convolution operator with CNML

Fig. 8 Code segment of running a fusion operator with CNML

339Survey and design of paleozoic: a high-performance compiler tool chain for deep learning…

1 3

converting between ONNX and their own format. Part of
the normative specification of the semantics of ONNX IR
is shown in Table 3, to match the programming model of
provided SDK, we design our own lower-level IR, also
shown in Table 3.

In our IR, we expose several optimization knobs related
to the hardware. It should be noted that there already exists
a build-in ONNX library in Python supporting the parsing
of network specification file in ONNX, but the support of
operators is incomplete, including the lack of dilation in
convolution. For end-users, they can easily optimize the
model on F-Block level of fusion schemes and part of
hyper-parameters. Besides, we reserve the optimization
interface of some other hyper-parameters on Layer level.

In this work, we only use the front-end part of the
TVM (TVM.Relay) to parse the network specifica-
tion file to lower level operator descriptors and network

specifications. The reason for not integrating Cambricon
MLU-100 to existing TVM backend is listed below:

• TVM backend applied GA to every nested loop in the
network to find an optimal configuration, thus schedule
the code with high efficiency. However, the provided
SDKs of Cambricon MLU-100 does not support such a
low level.

• We want to get a template C++ file that is convenient to
debug and profiling, which is not very similar with the
existing programming model of TVM.

With these reasons, we only use the TVM front-end as
parser.

First, out front-end scan from the beginning of the net-
work specification file, acquiring the settings of type, param-
eters layer by layer. Also, the shape of tensors should be
acquired for scheduler using. Since the shape of tensors run-
ning in the network depend on the shape of the input tensor
and parameters of layers, and the network specification file
does not contain information about the shape of tensors.
So, after processing one layer, our front-end calculates the
shape of the output tensor of the layer. Finally, the layers
description of the network and shape of corresponding ten-
sors are pushed into a queue to be scheduled. There is also
an optimization pipeline before scheduling, which will be
mentioned in the following part (Fig. 10).

4.2 Back‑end

The back-end is the main part of our design. As mentioned
in Sect. 3, existing tool-chain has inconvenience in both pro-
gramming interface and optimization knob. Moreover, it will
be better if the gap between ONNX and other frameworks
can be filled. So, we design the back-end model as following.

First, we decide to generate a template C++ file using the
CNML SDK, which will be compiled to executable infer-
ence session later instead of directly execute the inference

PyTorch
(.pkl)

Tensor Flow
(.pb)

Caffe
(.caffemodel)

...

High level IR (Open Neural Network eXchange, ONNX)

Low level IR (Operator Description)

Template C++ code (Using operator-level SDK)

Executable inference session

Front-end

Back-end

Fig. 9 Workflow of our tool-chain

Table 3 ONNX IR and our IR

Type Abstract Description Important fields

Model Top-level construct associating metadata with a graph ir_version, opset, graph
Op Set Explicitly naming the operator sets a model relies on opset_version, ops []

ONNX IR Graph Describing the dataflow of executing the model nodes [] . input, output
Node Describing the behaviour of a layer in the neural network op, attribute, in, out
Operator Explicitly declaring the used operators op_version, op_type
Model Describing the execution flow of the model ir_version, f_blocks[]
Op Set Explicitly naming the operator sets a model relies on opset_version, ops[]

Our IR F-Block One fusion block fusing multiple layers together layers[] , MP, in, out
Layer One single regular layer in the model op, MP, Sparsity, ..., in, out
Operator Describing the detail parameters of the operator op_type, attribute

340 Z. Liu et al.

1 3

session from input network description files. In this way,
the user can still conveniently run the inference session by
simply compile the generated C++ file, or they can also
adjust, debug, and conduct their own optimization on the
C++ file. So, to make it convenient for users to operate on
the template C++ file, we design a middle layer interface to
invoke the CNML. Comparing to origin CNML SDK, we
abstract the allocating of tensors into the constructor of one
operator (layer) and configuring of parameters into a single
function. The design of part of our middle layer interface is
shown in Fig. 12 in UML format, and we are keeping sup-
porting other common operators currently, aiming to support
state-of-the-art neural networks in CV, NLP.

The parameters of the layers in the network will be filled
into the constructor and configuring function according to
the descriptions of the layers in the queue pushed by the
front-end. It should be noted that the provided CNML SDK
does not originally support some operators so that we should
find an equivalent implementation to guarantee the correct-
ness of the network. For example, given the means � and
varance �2 , originally supported Batch_Normaliza-
tion compute the result as equation 1.

However, the Batch_Normalization in ResNet need
to scale and shift its distribution after origin normaliza-
tion, as equation 2 added after equation 1 which is called
Weighted_Batch_Normalization ans not supported
originally by CNML SDK, so we combine a BN layer with
a Scaling layer.

(1)x̂ ←
x − 𝜇

√

𝜎2 + 𝜖

In addition to Weighted_Batch_Normalization,
there are some other operators should be substituded with
equivalent operators including GEMM, LSTM cell, etc.

In terms of the programming interface, according to Fig-
ure 7, an operator should be compiled before it can run.
Before actually compile the operator, there are several
parameters can be optimized, including the core to be used
(Model_Parallelism, in the following parts we use MP
for short) and how to fuse the layer (layer fusion scheme).
So, our designed middle interface reserves the programming
interface for these two optimizations making it very con-
venient for users to optimize the network using their own
algorithm. Figure 11 illustrates the usage of our program-
ming interface.

4.3 Optimizer

Once we get the operator description and network specifi-
cation (low-level IR) from high-level IR, we conduct the
optimizing procedure. In this stage, the users can custom
their own optimization algorithm with given optimization
knobs, by which an optimized low-level IR can be achieved.
Then, the template C++ code will be scheduled according to
the optimized low-level IR. Once the scheduling parameters
are determined in the optimization procedure, they will not
change dynamically when executing.

As mentioned before, the highly abstracted runtime
library is very convenient, but with very limited space
to optimize. In contrast, the low-level SDK has a much
larger optimization space that may contain better schedule

(2)y ← 𝜔x̂ + 𝛽

Tensor Flow Caffe PyTorch ...

High-Level Differentiable IR

Tensor Expression and Optimization Search Space

LLVM, CUDA, Metal VTA

CPU GPU ... FPGA ASIC ...

Optimization

AutoTVM

Device Fleet

Fig. 10 TVM workflow (Chen et al. 2018)

341Survey and design of paleozoic: a high-performance compiler tool chain for deep learning…

1 3

configuration, but with increasing complexity in both pro-
gramming and searching. However, with efficiency search
algorithms proposed, including Reinforced-GA in Google
REGAL (Paliwal et al. 2020), parallel simulated annealing
algorithm in TVM (Chen et al. 2018) and even Google
CP-SAT, an approximation solver for NP-hard constraint
programming problem (Google 2020), the optimization
space that human can process increase dramatically. So,
our work is trying to expose the optimization space as
large as possible with the convenience in programming
reserved. Our back-end offers several optimizing knobs,
and we will show them by actual code.

The first knob is called MP, representing the core to be
used by every layer in an inference session. The Cambri-
con MLU-100 have 32 physical cores (Cambricon Tech-
nologies 2019a), which means MP can be selected from
1 to 32.

The second knob is Fusion Scheme representing how
to fuse the layers in the network to make use of data local-
ity, by which the off-chip memory access can be reduced
so that the inference throughput can increase, however,
fusion may also introduce redundant calculation (Ragan-
Kelley et al. 2013), making it a trade-off between reduced
memory access and redundant calculation. And the trade-
off is designed by the users.

A fusion layer can also select its optimal MP, so that the
joint optimization between MP and Fusion Scheme can be
done. The actual code segment in Figure 13 shows that it is
convenient to conduct optimization in MP and layer fusion
in our back-end.

Since arbitry 2 layers can be fused into a fusion block,
and every fusion block can be set a MP, the total optimi-
zation space is very huge, as shown in equation 3, where
∏i

x=1
(n−x)

i!
 represent the selection of fusion scheme and 32i+1

represent the selection of MP of every fusion block.

This optimization space is too big for users to conduct the
brute search, for example, given a network with 32 layers,
there are 3.79 × 10

38 potential combination of the settings.
So, user-customized searching algorithms are necessary.

5 Evaluation

To evaluate our work, we mainly consider the convenience
of programming and space for optimization, and our work
will be compared with runtime library CNRT and operator
level SDK CNML. The performance of optimization strate-
gies will not be evaluated. It should be noted that although
there are many optimization knobs in the configuration file
of CNRT, it only selects the network file matches human
input settings. Once a network file is packed, users can not
make any changes. We select raw performance, amount of
code, and optimization knobs as our evaluation indices.

First, we evaluate the optimization knobs of various tool-
chain, as shown in Table 4. We are keeping supporting the
operator, networks, and optimization knobs. Apart from
Load Balance Mode, we reserve enough interface for spar-
sity and operator concatenation. They can respectively be
configured in configLayer() stage and be implemented
by ConcatLayer derived from Layer in Fig. 12. Com-
paring to runtime library CNRT, our backend offer much
larger optimization space to search. However, larger space
will result in increasing in complexity when program-
ming. So, it is necessary to evaluate the convenience of
programming.

We evaluate the convenience of programming by count-
ing the line of code when programming various state-of-
the-art neural networks in the CV field. Together with the
amount of code, we also evaluate the optimization space by
counting the potential optimization combination. The cal-
culation of the amount of code ignores the code responsible
for model loading. Table 5 shows the line of code of the
file generated from the network specification file. Figure 14
shows the ratio of the amount of code and corresponding
optimization space. Our work reduces the line of code con-
siderably and thus reduces complexity when programming.
In the meantime, we provide users with a huge optimization
space.

An increased abstract layer may increase the overhead
when calling and invoking, resulting in a decrease in
performance. So, we also evaluate the performance of
our back-end with no optimization and compare the gap
between directly using operator level SDK CNML. Fig-
ure 15 illustrated the performance comparison between

(3)Space(n) =

n−1
�

i=1

�

32
i+1 ×

∏i

x=1
(n − x)

i!

�

Fig. 11 Usage of our back-end

342 Z. Liu et al.

1 3

Fig. 12 Part of interface design

343Survey and design of paleozoic: a high-performance compiler tool chain for deep learning…

1 3

our work and operator level SDK CNML, where the gap is
tiny, which means our abstract layer will not have a great
negative influence on the performance.

It should be noted that any further optimization that
will greatly influence the performance will be done by
the users. Here we only dispel the misgivings of whether
our back-end abstract will influence the performance and
ignore the performance of runtime library CNRT since
the optimization strategies inside CNRT are unavailable.

Finally, we evaluate the performance of our work
by comparing it with NVIDIA RTX2080TI with Ten-
sorRT (NVIDIA Corp 2020, 2018), and hardware specifi-
cation of RTX 2080TI is listed in Table 6.

Table 7 provides the detailed description of deep neural
network models used in our evaluation.

We also apply a straightforward optimization strategy to
improve the performance of codes generated by our com-
piler tool-chain. According to Fig. 16, with TensorRT,
RTX 2080TI has much better performance against Cam-
bricon MLU-100 with the existing tool-chain, with even
half of the theoretical performance in single/half-precision
floating computation.

By applying a simple strategy of Fusing all the layers
into one block, and set a maximal MP , the performance
of various models on MLU100 improves significantly, and
our work has great potential one applying user-customized
optimization strategies.

Combining Table 7 and Fig. 16, we have several find-
ings with our simple optimization strategy:

• For networks with low operation count per layer (e.g.,
ResNet and AlexNet), they can benefit a lot from layer
fusion provided by our work (Comparing to the rules-
based fusion in TensorRT, which means one fusion
block contain only one CONV at most).

• For mobileNet, although it has low operation count per
layer, it uses depthwise separable convolution with dif-
ferent access patterns with low data reuse (Shao et al.
2019; Sandler et al. 2018) compared to ordinary con-
volution, which need manually tunning of even lower-
level code than provided SDK. So, the fine-tunned Ten-
sorRT outperforms our work on mobileNet.

• For networks with less layer but much higher operation
count per level (VGG-19), the negative influence of
redundant operation brought by fusion is greater than
the positive influence of locality, resulting in a lower
performance compared to TensorRT.

Currently, we are studying a better optimization strategy
for the Cambricon MLU100 accelerator.

Fig. 13 Code sample for setting MP and layer fusion of our back-end

Table 4 Supported optimization knobs

* � : Currently private, but interface reserved (Concat layer in Fig-
ure 12 and sparsity in configLayer())

CNRT CNML Our Work

Batch Size ✓ ✓ ✓

Load Balance Mode ✓ ✓ ×

Accuracy × ✓ ✓

Sparsity × ✓ �

Model Parallelism × ✓ ✓

Fusion × ✓ ✓

Concatation × ✓ �

Table 5 Line of code

CNRT CNML Our Work

ResNet-18 / 2491 485
ResNet-50 / 6225 1180
VGG-16 / 1387 260
VGG-19 / 1603 296
mobileNet / 5579 1053
AlexNet / 730 156

344 Z. Liu et al.

1 3

6 Related work

To address the difficulties in programming the accelerator and
optimize the code generated, researchers propose domain-spe-
cific language (DSL) to schedule the hardware code with high
efficiency. The representative DSL include Halide (Ragan-
Kelley et al. 2013), Tensor Comprehension (Vasilache et al.
2018). Originally, Halide is designed for image processing
pipeline on NVIDIA GPU, similar to Diesel (Elango et al.
2018), and Tensor Comprehension is designed for machine
learning applications. DSLs will abstract complex control
logic comparing to traditional language like C/C++/Java.
For example, Tensor Comprehension will infer the loop
bound automatically, making users free from deciding the

Fig. 14 Comparsion of code
amount and optimization space
between existing tool-chain and
our work

Fig. 15 Performance com-
parison between CNML and
our work

Table 6 The RTX 2080TI hardware specification (NVIDIA Corp
2019)

Item Descriptions

Core freq. 1.35/1.55 GHz
Perf.(FP32) 13.4 TFLOPS
Perf.(FP64) 420 GFLOPS
Perf.(Tensor@INT4) 440 TOPS
Memory size 11 GB
Memory bit width 352 bit
Memory bandwidth 616 Gib/s
Host Interface PCIe 3.0x16
TDP 250 W

Table 7 Networks description
(Op is in the unit of TOPs)

* With depthwise separable convolution

Network Total Op Avg. Op No. of CONV

ResNet-18/50 (He et al. 2016) 3.38/7.61 0.169/0.144 20/53
VGG-19 (Simonyan and Zisserman 2015) 36.34 2.27 16
AlexNet (Krizhevsky et al. 2012) 1.22 0.244 5
mobileNet* (Sandler et al. 2018) 10.33 0.199 52

345Survey and design of paleozoic: a high-performance compiler tool chain for deep learning…

1 3

loop bound. Since neural network tasks have high similarity
with image processing pipelines, currently, many program-
ming frameworks of neural networks are based on Halide IR,
like TVM (Chen et al. 2018). TVM is proposed to address
the problem of universality. To generate more efficient hard-
ware code, there are also several newly introduced schedule
frameworks including FlexTensor (Zheng et al. 2020) as a
back-end optimizer and TASO (Jia et al. 2019) as graph level
optimizer. In this research, we are proposing a DSL for Cam-
bricon MLU100 with lower complexity and higher flexibility
comparing to existing tool-chain. In addition to the avail-
ability of service to high performance, the robustness of the
service is gaining increasing attention, including path-extract
based adversarial defend (Qiu et al. 2019), task-level error
recovery system in asymmetric architecture (Leng et al. 2020).
To integrate these features into existing accelerators with high
efficiency, the support of the compiler is necessary.

When it comes to optimization, many proposed hardware
architecture designs are considering sparsity (Zhu et al 2019;
Albericio et al. 2016), which should be combined with the
sparse algorithm. Fusion are another general applied optimi-
zation method including loop fusion (Qiao et al. 2019), ker-
nel fusion (Wang et al. 2010). These fusion are mainly focus-
ing on CPU/GPU code. For specialized accelerators, few
vendors expose their algorithms. In this work, we reserve
the optimization interface of sparsity, fusion, and some other
knobs, including tensor layout transformation (Kim et al.
2019), accuracy adjusting to enable the users to apply their
own optimization strategies.

7 Conclusion

In this paper, we propose a compiler tool-chain design for
supporting the inference session of DNN models on the spe-
cialized accelerator Cambricon-MLU100. Our tool-chain
includes a network parser, a code generator, and an opti-
mization interface. Combined together, it is able to take in
ONNX-based network specification files and generate the

corresponding C++ codes that wraps over the low-level
operator library. Our tool-chain maintains the programmer-
friendly APIs that are similar to the high-level runtime
library. Meanwhile, it also exposes the programming inter-
face for low-level optimization knobs such that the users can
easily customize their own optimization strategies.

Acknowledgements We thank the anonymous reviewers for their con-
structive feedback. This work was supported by National Key R&D
Program of China (2019YFF0302600) and the National Natural Sci-
ence Foundation of China (NSFC) Grant (61702328 and 61832006).
Any opinions, findings, and conclusions in this paper are those of the
authors only and do not necessarily reflect the views of our sponsors

References

Albericio, J et al.: Cnvlutin: Ineffectual-Neuron- Free Deep Neural
Network Computing. In: 43rd ACM/IEEE Annual International
Symposium on Computer Architecture, ISCA 2016, Seoul,
South Korea, June 18–22, 2016, pp. 1–13 (2016). https ://doi.
org/10.1109/ISCA.2016.11

Alwani, M., et al.: Fused-layer CNN accelerators. In: 49th Annual IEEE/
ACM International Symposium on Microarchitecture. (2016)

Chen, T. et al.: TVM: an automated end-to- end optimizing compiler
for deep learning. In: 13th USENIX Symposium on Operating
Systems Design and Implementation. (2018)

Chen, T. et al.: DianNao: a small-footprint high-throughput accelera-
tor for ubiquitous machinelearning. In: Architectural Support for
Programming Languages and Operating Systems, ASPLOS ’14,
Salt Lake City, UT, USA, March 1–5, 2014. Ed. by Rajeev Bal-
asubramonian, Al Davis, and Sarita V. Adve, pp. 269–284 (2014).
https ://doi.org/10.1145/25419 40.25419 67

Chen, Yunji et al.: DaDianNao: a machine-learning supercomputer. In:
47th Annual IEEE/ACM international symposium on microarchi-
tecture, MI- CRO 2014, Cambridge, United Kingdom, Decem-
ber 13–17. pp. 609–622 (2014). https ://doi.org/10.1109/MICRO
.2014.58

Copeland, M.: What’s the difference between deep learning training
and inference? https ://blogs .nvidi a.com/blog/2016/08/22/diffe
rence -deep-learn ing-train ing-infer ence-ai/. Accessed Feb. 20
(2020)

Cui, W. et al.: Ebird: Elastic batch for improving responsiveness
and throughput of deep learning services. In: 37th IEEE
International Conference on Computer Design, ICCD 2019,
Abu Dhabi, United Arab Emirates, November 17–20, 2019.

Fig. 16 Performance com-
parison between Cambricon
MLU100 and NVIDIA RTX
2080Ti (TensorRT)

https://doi.org/10.1109/ISCA.2016.11
https://doi.org/10.1109/ISCA.2016.11
https://doi.org/10.1145/2541940.2541967
https://doi.org/10.1109/MICRO.2014.58
https://doi.org/10.1109/MICRO.2014.58
https://blogs.nvidia.com/blog/2016/08/22/difference-deep-learning-training-inference-ai/
https://blogs.nvidia.com/blog/2016/08/22/difference-deep-learning-training-inference-ai/

346 Z. Liu et al.

1 3

IEEE, pp. 497–505 (2019). https ://doi.org/10.1109/ICCD4
6524.2019.00075

Dong, Z. et al.: HAWQ: Hessian aware quantization of neural net-
works with mixed-precision. In: 2019 IEEE/CVF International
Conference on Computer Vision, ICCV 2019, Seoul, Korea
(South), October 27–November 2. pp. 293–302 (2019). https ://
doi.org/10.1109/ICCV.2019.00038

Elango, V. et al.: Diesel: DSL for linear algebra and neural net com-
putations on GPUs. In: Proceedings of the 2nd ACM SIGPLAN
international workshop on machine learning and programming
languages, MAPL@PLDI 2018, Philadelphia, PA, USA, June
18–22, 2018. Ed. by Justin Gottschlich and Alvin Cheung, pp.
42–51 (2018).https ://doi.org/10.1145/32113 46.32113 54

Filipovic, J., et al.: Optimizing CUDA code by kernel fusion: applica-
tion on BLAS. J. Supercomput. 71(10), 3934–3957 (2015)

Google. Route. Schedule. Plan. Assign. Pack. Solve. OR-Tools is fast
and portable software for com- binatorial optimization. https ://
devel opers .googl e.com/optim izati on. Accessed May 20, (2020)

Guo C et al.: Flexibility for DNN Acceleration via Temporal GPUSys-
tolic Array Integration. In: CoRR abs/2002.08326 (2020). url:
arXiv :2002.08326

He, K. et al.: Deep residual learning for image recognition. In: 2016
IEEE Conference on Computer Vision and Pattern Recognition.
(2016)

Jain, A. et al.: Performance Characterization of DNN Training using
TensorFlow and PyTorch on Modern Clusters. In: 2019 IEEE
International Conference on Cluster Computing, CLUSTER 2019,
Albuquerque, NM, USA, September 23–26. pp. 1–11 (2019). https
://doi.org/10.1109/CLUST ER.2019.88910 42

Jia, Y. et al.: Caffe: convolutional architecture for fast feature embed-
ding. In: Proceedings of the ACM International Conference on
Multimedia, MM ’14, Orlando, FL, USA, November 03–07,
2014. Ed. by Kien A. Hua et al. pp. 675–678 (2014). https ://doi.
org/10.1145/26478 68.26548 89

Jia, Z. et al.: TASO: optimizing deep learning computation with auto-
matic generation of graph substitutions. In: Proceedings of the
27th ACM Symposium on Operating Systems Principles. (2019)

Jouppi, N.P. et al.: In-datacenter performance analysis of a tensor pro-
cessing unit. In: Proceedings of the 44th Annual International
Symposium on Computer Architecture. (2017)

Kim, J. et al.: A code generator for high-performance tensor contrac-
tions on GPUs. In: IEEE/ACM International Symposium on Code
Generation and Optimization. (2019)

Krizhevsky, A., et al.: ImageNet classification with deep convolutional
neural networks. In: Advanced in Neural Information Processing
Systems. (2012)

Leng, Jingwen et al.: Asymmetric Resilience: Exploiting Task-Level
Idempotency for Transient Error Recovery in Accelerator-Based
Systems. In: IEEE International Symposium on High Perfor-
mance Computer Architecture, HPCA 2020, San Diego, CA,
USA, February 22–26, 2020. IEEE, pp. 44–57 (2020). https ://
doi.org/10.1109/HPCA4 7549.2020.00014

Liu, D-F et al.: PuDianNao: a polyvalent machine learning accelerator.
In: Proceedings of the International Conference on Architectural
Support for Programming Languages and Operating Systems.
(2015)

Marchisio, A., Hanif, M.A., Shafique, M.: CapsAcc: An Efficient Hard-
ware Accelerator for CapsuleNets with Data Reuse. In: Design,
Automation & Test in Europe Conference & Exhibition, DATE
2019, Florence, Italy, March 25-29, 2019. Ed. by Jürgen Teich
and Franco Fummi. pp. 964–967 (2019). https ://doi.org/10.23919
/DATE.2019.87149 22

MXNet. A flexible and efficient library for deep learning. A truly open
source deep learning framework suited for exible research proto-
typing and production. https ://mxnet .apach e.org/. Accessed Feb.
20 (2020)

NVIDIA Corp. Geforce RTX 2080Ti. User Guide. (2019)
NVIDIA Corp. NVIDIA AI INFERENCE PLAT- FORM. Giant Leaps

in Performance and Efficiency for AI Services, from the Data
Center to the Network’s Edge. (2018)

NVIDIA Corp. NVIDIA TensorRT. Programmable Inference Accel-
erator. (2020)

ONNX. Open Neural Network Exchange. The open standard for
machine learning interoperability. http://onnx.ai. Accessed Feb.
20 (2020)

Paliwal, A. et al.: Reinforced genetic algorithm learning for optimizing
computation graphs. In: 8th International Conference on Learn-
ing Rep- resentations, ICLR 2020, Addis Ababa, Ethiopia, April
26–30 (2020)

Qiao, B. et al.: From loop fusion to kernel fusion: a domain-specific
approach to locality optimization. In: IEEE/ACM International
Symposium on Code Generation and Optimization. (2019)

Qiu, Yuxian et al.: Adversarial Defense Through Network Profil-
ing Based Path Extraction. In: IEEE Conference on Computer
Vision and Pat- tern Recognition, CVPR 2019, Long Beach, CA,
USA, June 16-20. pp. 4777-4786 (2019). https ://doi.org/10.1109/
CVPR.2019.00491

Quinton, P.: Systolic arrays: why and how? In: Parcella 1994, VI. Inter-
national Workshop on Parallel Processing by Cellular Automata
and Arrays, Potsdam, Germany, September 21–23, 1994. Proceed-
ings. Ed. by Chris R. Jesshope, Vesselin Jossifov, and Wolfgang
Wilhelmi. Vol. 81. Mathematical Research. pp. 39–50 (1994)

Ragan-Kelley. J., et al.: Halide: a language and compiler for optimiz-
ing parallelism, locality, and recomputation in image processing
pipelines. In: Conference on Programming Language Design and
Implementation. (2013)

Sandler, M., et al.: MobileNetV2: Inverted Residuals and Linear Bot-
tlenecks. In: Conference on Computer Vision and Pattern Rec-
ognition. (2018)

Shao, Y.S. et al.: Simba: Scaling Deep- Learning Inference with Multi-
Chip-Module-Based Architecture. In: Proceedings of the 52nd
Annual IEEE/ACM International Symposium on Microarchitec-
ture, MICRO 2019, Columbus, OH, USA, October 12–16, 2019.
ACM, pp. 14–27 (2019). https ://doi.org/10.1145/33524 60.33583
02

Simonyan, K., Zisserman, A.: VVGGery Deep Convolutional Networks
for Large-Scale Image Recognition. In: 3rd International Confer-
ence on Learning Representations. (2015)

Cambricon Technologies. Cambricon MLU100 Datasheet. Aug. (2019)
Cambricon Technologies. Cambricon Neuware Whitesheet. Aug.

(2019)
Vasilache, N., et al.: Tensor comprehensions: framework-agnostic high-

performance machine learning abstractions. In: CoRR 1802.04730
(2018)

Wang, G., Lin, Y., Yi, W.: Kernel fusion: an effective method for better
power efficiency on multithreaded GPU. In: 2010 IEEE/ACM Int’l
Conference on Green Computing and Communications. (2010)

Zhang, S. et al.: Cambricon-X: An accelerator for sparse neural net-
works. In: 49th Annual IEEE/ACM International Symposium on
Microarchitecture, MICRO 2016, Taipei, Taiwan, October 15–19,
20:1–20:12 (2016). https ://doi.org/10.1109/MICRO .2016.77837
23

Zhang, W et al.: Laius: towards latency awareness and improved uti-
lization of spatial multitasking accelerators in datacenters. In:
Proceed- ings of the ACM International Conference on Super-
computing, ICS 2019, Phoenix, AZ, USA, June 26-28, 2019. Ed.
by Rudolf Eigenmann, Chen Ding, and Sally A. McKee. ACM,
pp. 58–68 (2019). https ://doi.org/10.1145/33303 45.33303 51

Zheng, S. et al.: FlexTensor: An Automatic Schedule Exploration and
Optimization Framework for Tensor Computation on Heterogene-
ous System. In: ASPLOS ’20: Architectural Support for Program-
ming Languages and Operating Systems, Lausanne, Switzerland,

https://doi.org/10.1109/ICCD46524.2019.00075
https://doi.org/10.1109/ICCD46524.2019.00075
https://doi.org/10.1109/ICCV.2019.00038
https://doi.org/10.1109/ICCV.2019.00038
https://doi.org/10.1145/3211346.3211354
https://developers.google.com/optimization
https://developers.google.com/optimization
http://arxiv.org/abs/2002.08326
https://doi.org/10.1109/CLUSTER.2019.8891042
https://doi.org/10.1109/CLUSTER.2019.8891042
https://doi.org/10.1145/2647868.2654889
https://doi.org/10.1145/2647868.2654889
https://doi.org/10.1109/HPCA47549.2020.00014
https://doi.org/10.1109/HPCA47549.2020.00014
https://doi.org/10.23919/DATE.2019.8714922
https://doi.org/10.23919/DATE.2019.8714922
https://mxnet.apache.org/
http://onnx.ai
https://doi.org/10.1109/CVPR.2019.00491
https://doi.org/10.1109/CVPR.2019.00491
https://doi.org/10.1145/3352460.3358302
https://doi.org/10.1145/3352460.3358302
https://doi.org/10.1109/MICRO.2016.7783723
https://doi.org/10.1109/MICRO.2016.7783723
https://doi.org/10.1145/3330345.3330351

347Survey and design of paleozoic: a high-performance compiler tool chain for deep learning…

1 3

March 16-20, 2020 [ASPLOS 2020 was canceled because of
COVID-19]. Ed. by James R. Larus, Luis Ceze, and Karin Strauss.
pp. 859-873 (2020). https ://doi.org/10.1145/33733 76.33785 08

Zhou, X et al.: Cambricon-S: Addressing Irregularity in Sparse Neural
Networks through A Cooperative Software/Hardware Approach.
In: 51st Annual IEEE/ACM International Symposium on Micro-
architecture, MICRO 2018, Fukuoka, Japan, October 20–24. pp.
15–28 (2018). https ://doi.org/10.1109/MICRO .2018.00011

Zhu, M. et al.: Sparse Tensor Core: Algorithm and Hardware Co-
Design for Vector-wise Sparse Neural Networks on Modern
GPUs. In: Proceedings of the 52nd Annual IEEE/ACM Interna-
tional Symposium on Microarchitecture, MICRO 2019, Colum-
bus, OH, USA, October 12-16, pp. 359-371 (2019). https ://doi.
org/10.1145/33524 60.33582 69

Zihan Liu received the B.Sc.
degree from East China Normal
University, China. He is cur-
rently toward the M.Sc degree in
the field of computer science
under supervision of Dr. Jingwen
Leng with Department of Com-
puter Engineering Faculty,
Shanghai Jiao Tong University,
China. His research interests
include computer system archi-
tecture and deep learning
compiler.

Jingwen Leng received the Ph.D.
degree from the University of
Texas at Austin, where he
focused on improving the effi-
ciency and resiliency of general-
purpose GPUs. He is a Tenure-
Track Associate Professor with
the John Hopcroft Computer
Science Center, Computer Sci-
ence Department, Shanghai Jiao
Tong University. He is currently
interested at taking a holistic
approach to optimizing the per-
formance, efficiency, and relia-
bility for heterogeneous comput-
ing systems.

Guandong Lu received the B.Sc.
degree from Shanghai Jiao Tong
University, China. He is cur-
rently toward the M.Sc degree in
the field of computer science
under supervision of Dr. Jingwen
Leng with Department of Com-
puter Engineering Faculty,
Shanghai Jiao Tong University,
China. His research interests
include resilient computing on
machine learning system and
computer architecture.

Chenhui Wang is currently
toward the B.Sc. degree in auto-
mation specialty (AI) with
Department of Computer Engi-
neering Faculty, Shanghai Jiao
Tong University, China. His
research interest include high
performance computing and par-
allel optimization.

Quan Chen received the PhD
degree from the Department of
Computer Science and Engineer-
ing, Shanghai Jiao Tong Univer-
sity, China, June 2014. He is a
tenure-track associate professor
with the Department of Com-
puter Science and Engineering,
Shanghai Jiao Tong University,
China. His research interests
include high performance com-
puting, task scheduling in vari-
ous architectures, resource man-
agement in datacenter, runtime
system and operating system.

Minyi Guo received the PhD
degree in computer science from
the University of Tsukuba,
Japan. He is currently Zhiyuan
chair professor and head of the
Department of Computer Sci-
ence and Engineering, Shanghai
Jiao Tong University, China. His
present research interests include
parallel/distributed computing,
compiler optimizations, embed-
ded systems, pervasive comput-
ing, big data, and cloud comput-
ing. He is currently on the
editorial board of the IEEE
Transactions on Parallel and Dis-

tributed Systems, IEEE Transactions on Cloud Computing, and Journal
of Parallel and Distributed Computing. He is a fellow of CCF.

https://doi.org/10.1145/3373376.3378508
https://doi.org/10.1109/MICRO.2018.00011
https://doi.org/10.1145/3352460.3358269
https://doi.org/10.1145/3352460.3358269

	Survey and design of paleozoic: a high-performance compiler tool chain for deep learning inference accelerator
	Abstract
	1 Introduction
	1.1 Deep learning accelerator
	1.2 Compiler tool-chain
	1.3 Optimization space
	1.4 Contributions

	2 How to program deep learning applications
	2.1 Training vs inference
	2.2 Problem of network format
	2.3 Programming interface in inference
	2.4 Optimizer in inference
	2.5 Cambricon MLU-100 and Software

	3 Why our tool-chain necessary?
	3.1 Performance
	3.2 Programming interface
	3.3 Optimization

	4 Our approach: Paleozoic
	4.1 Front-end
	4.2 Back-end
	4.3 Optimizer

	5 Evaluation
	6 Related work
	7 Conclusion
	Acknowledgements
	References

