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Abstract
Specialized hardware accelerators for deep learning are widely introduced by many hardware vendors because of their high 
performance and efficiency. However, different vendors adopt different accelerator architectures, making it challenging for 
the compiler tool-chain to generate and optimize high-performance codes. Moreover, the current tool-chains provided by the 
vendors are either highly abstract, which makes it hard to optimize or contain too many hardware-related details, which makes 
it inconvenient to program. So, in this paper, we propose a middle layer compiler tool-chain for Cambricon MLU-100 to fill 
the gap between high-level runtime library and low operator-level SDK. Our tool-chain is based on the operator level SDK 
but abstracts away its redundant initialization and allocation statement. We also expose the interface of major optimization 
knobs compared to the existing runtime, thus enabling a considerable optimization space. We evaluate our work by several 
state-of-the-art neural networks and choose the line of code and optimization knobs as evaluation metrics. We also compare 
the performance against state-of-the-art tool-chain TensorRT applying simple optimization strategy and find that our work 
has great potential in optimization. Our work can guarantee the user a vast optimization space with only around 20% amount 
of the codes that hides the redundant initialization and allocation statements from users.

Keywords Deep learning accelerator · Compiler tool-chain · Hardware-related optimization

1 Introduction

1.1  Deep learning accelerator

With the evolution of computing power, computation intense 
deep learning has been increasingly applied in the key appli-
cation domains, including computer vision, natural language 

processing, etc. Nowadays, conventional general-purpose 
processors like CPU/GPU can hardly meet the growing need 
in computation power. On the other hand, the computation 
patterns in deep learning are good candidates for hardware 
specialization. There exist a few kinds of patterns in a deep 
neural network, including convolution, pooling, activation, 
batch normalization, and fully connected layers. These cal-
culations are mostly based on linear calculation, with con-
junctions of linear transformations, matrix decomposition, 
etc. The general-purpose CPUs that adopt deep and com-
plex pipelines are highly inefficient in this scenario. Since 
the linear calculation deals with a huge amount of data, the 
optimal memory hierarchy is also different. So, increas-
ing vendors are releasing their own specialized accelera-
tors (Jouppi et al. 2017; Zhang et al. 2016; Marchisio et al. 
2019), and these accelerators have superior performance and 
energy efficiency in deep learning tasks, these specialized 
accelerators also have simpler and more diverse architec-
tures than the general-purpose processor, as well as differ-
ent memory subsystems. Meanwhile, in addition to these 
specialized-designed accelerators, increasing researchers 
focus on accelerator architecture with better universality for 
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scalar, vector, matrix and tensor computation instead of only 
focusing on convolution (Guo et al. 2020), which also bring 
challenges to compiler design.

1.2  Compiler tool‑chain

The significant difference in the architecture and memory 
hierarchy leads to great challenges in code scheduling and 
generation, instruction selection, memory accessing on 
the specialized hardware. Currently, most of the compiler 
tool-chains are designed for CPU/GPU, causing difficul-
ties in achieving the maximal efficiency of the specialized 
hardware. Though researchers also try to extend the exist-
ing tool-chain for better task scheduling on heterogene-
ous architecture, including Laius (Zhang et al. 2019) and 
Ebird (Cui et al. 2019), the overhead of these methods is 
higher than compiler level optimization. On the other hand, 
the existing neural network accelerators are based on differ-
ent architectures, ranging from systolic array (Quinton 1994) 
to dot-product unit (Chen et al. 2014, 2014; Liu et al. 2015), 
bringing significant challenges to the compiler tool-chain 
design. Currently, the hardware vendors provide their own 
compiler tool-chains, including TensorRT (NVIDIA Corp 
2020) of NVIDIA Corp., Cambricon Neuware (Cambricon 
Technologies 2019b) from Cambricon Technologies, etc. 
However, how to deal with diverse hardware architectures 
remains an open question. Moreover, when it comes to the 
optimization of deep neural networks, very few vendors give 
the source code and algorithms to the users, making the opti-
mization process a black box. Given that some vendors may 
provide some low-level SDK of their hardware, these tools 
are highly hardware-related, making it hard for users with 
little hardware knowledge.

1.3  Optimization space

The challenges in compiler tool-chain also reflect on the 
optimization of neural network tasks. There are two stages 
in a deep neural network application: training and inference, 
where the optimization methodology is different too. In this 
research, we mainly focus on the inference process. In the 
inference process, we mainly want the higher throughput 
(FPS) and lower power consumption. To satisfy the demand 
in throughput, researchers propose several optimization 
knobs, including sparsity, precision-accuracy trade-off, 
operation fusion/concatenation, etc. We mainly introduce 
the mentioned factors.

For sparsity, from the introduction of AlexNet (Kriz-
hevsky et al. 2012), the networks apply the DropOut technol-
ogy to eliminate in-active neurons in a network to simplify 
the structure of the network. This technology is aiming to 
relieve the accuracy drop caused by over-fitting, and sparsity 
is the side-product of this technology. The sparsity of the 

network significantly reduces the demands in data transfer-
ring and computation power. Currently, some sparse version 
state-of-the-art neural networks cost only 10%–20% compu-
tation count comparing to the original version. The sparsity 
mentioned previously is called static sparsity, and most of 
them are sparsity of weight/bias matrix, which can be deter-
mined before the network running. Another sparsity is called 
dynamic sparsity (Zhou et al. 2018), which is introduced by 
the wide application of ReLU activation function, which 
generates many zeros when the network is running, and the 
position of 0 depends on every specific input, which can 
not be determined in advance. The sparsity of the network 
brings the problem of irregularity, which means the accel-
erators have difficulty in determining the exact position of 0 
to skip. If not well processed, to find the 0 and skip may even 
introduce extra overhead results in an overall performance 
drop. For compiler tool-chain, how to deal with the irregu-
larity brought by sparsity has yet to be solved.

For accuracy, in the training process, there exist many 
no-linear calculations related to the gradient. Since the gra-
dient may be very small or big when training the network, 
low precision may result in a great decrease in classification 
accuracy. However, in the inference process, since all the 
weight/bias are fixed, accuracy drop brought by proper pre-
cision cutting may be acceptable for only 1% or 2%. Actu-
ally, there are several methods to decrease the precision, 
including simply casting FP32 to FP16, quantizing to INT8/
INT4 (Dong et al. 2019), etc. The problem is how to deter-
mine the proper precision that will not result in unacceptable 
accuracy drop, which is a trade-off between precision and 
final classification accuracy.

The operator fusion and concatenation are widely used 
in the current compiler tool-chain provided by various ven-
dors (NVIDIA Corp 2020; Cambricon Technologies 2019b). 
Given 2 layers with data dependency, fusion means omit-
ting the intermediate output of prior layers, thus reducing 
the data movement of intermediate results  (Wang et al. 
2010; Filipovic 2015). However, the absence of intermedi-
ate results inevitably introduces redundant calculation. For 
example, there is an overlapping area in 2D sliding window 
convolution that will be computed multiple times (Ragan-
Kelley et al. 2013; Alwani et al. 2016). So, operator fusion is 
also a trade-off between reduced memory access and redun-
dant computation. On the other hand, operator concatena-
tion is the optimization between 2 layers/kernel without 
data dependency. By concatenation, the overhead of kernel 
launch can be reduced considerably, and the computational 
intensity can be increased too.

1.4  Contributions

In this work, we perform a survey on current specialized 
deep learning accelerators and their compiler tool-chain. We 
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find that currently, it is difficult for users to customize their 
inference sessions to achieve better performance on target 
platforms. The vendors either abstract all the details mak-
ing it unavailable for users to research or expose too many 
redundant operations, making it inconvenient to code and 
optimize. So, choosing Cambricon MLU-100 as our target 
platform, we introduce another abstract layer that hides the 
redundant operation like initialization, memory allocation, 
but exposes the optimization interface. Out abstract layer 
exposes a huge optimization space with only 20% amount 
of code, and this abstract layer has a tiny influence on the 
performance compared to the original tool-chain.

2  How to program deep learning 
applications

In this section, we introduce current frameworks for deploy-
ing a deep learning service on various platforms. It should 
be noted that what the programmers do in deep-learning 
training and deep-learning inference is quite different, and 
we mainly focus on deep-learning inference.

2.1  Training vs inference

Training in supervised machine learning means adjusting 
the human-constructed mathematical model by feeding the 
pair of input and correct output data, which enable the model 
to match the correct mathematical distribution as close as 
possible. In detail, the initialized model calculates the output 
of current input, compare the output with correct output, 
and adjust the model with mathematical methods. Inference 
in machine learning means calculating the output of an 
unknown input given the trained mathematical model. Obvi-
ously, the training process includes the inference process, 
and there is a significant difference in computational char-
acteristics. Most of the computation in the inference process 
is the linear calculation, but a huge amount of non-linear 
calculation related to gradient exists in the training process.

Moreover, the programming model of training and infer-
ence is quite different. When programming the training ses-
sion, programmers mainly care about how to construct a 
model with higher accuracy, which means they may adjust 
the structure of the model repeatedly, introduce the new 
type of computation, change the hyper-parameter setting, 
etc. They care less about the model optimization, execu-
tion on ending hardware, and actual deployment. They can 
choose whatever system with strong computational power 
and train the network. So, they need the programming model 
with high-level hardware abstract, but convenient to invoke 
the operator and adjust the parameter settings. If possible, a 
higher flexibility for newly introduced operators is preferred. 
However, when programming the inference session, the 

structures of the model are fixed, programmers are mostly 
not allowed to adjust the model, and generally, the target 
platform is fixed in advance. So, the programmers should 
care about the actual executing time, power consumption, 
throughput, stability, etc., on actual hardware, which means 
the optimization is highly hardware-related, as shown in 
Fig. 1. This means they need the programming model to 
give enough hardware specifications, characteristics, in other 
words, enough optimization space so that they can optimize 
the trained model for specific hardware and reach the peak 
speed, stability on the target platform.

In this paper, we mainly focus on the technologies in the 
inference stage.

2.2  Problem of network format

Currently, there are many kinds of deep learning frameworks 
for training and inferencing, including TensorFlow, PyTorch, 
MXNet, Caffe (Jain et al. 2019; MXNet 2020; Jia et al. 2014),  
etc. For training, researchers choose the frameworks to fit 
their coding habit, and different frameworks produce net-
work files in different formats, as listed in Table 1.

However, things get complicated in the inference (deploy-
ing) stage. For example, the frameworks based on Python 
like TensorFlow, PyTorch are quite convenient for coding 
but inferior in executing speed. The frameworks based on 
C++ like Caffe have great executing performance but hard 
to configure, coding. This introduces a great gap between 
academia and industry. Typically, the company should 
reconstruct a state-of-the-art network originally written 
in Python to C++, and this is a time costing process. The 
Open Neural Network eXchange (ONNX) format addresses 
this problem. Currently, the providers of the frameworks 
integrate conversion APIs for the users, supporting them to 
convert network specification files into ONNX file, mak-
ing it easier for deployment. Currently, various frameworks, 
including PyTorch, TensorFlow, Caffe, MXNet, CNTK, 
Chainer, PaddlePaddle, support converting between ONNX 
format (ONNX 2020). So, in this research, we directly use 
ONNX as our standard, bypassing the problem of the diver-
sity of frameworks.

2.3  Programming interface in inference

As mentioned previously, the inference is strongly related to 
actual hardware. So, the hardware vendors provide their own 
interface for users. For example, Google provided a series 
of commands for users to access their cloud TPU, support-
ing users to upload the models and get the output of TPU, 
as shown in Fig. 2. NVIDIA also provided TensorRT with 
C++ API for users to load the models and execute the infer-
ence session, as shown in Fig. 3. However, these front-ends 
of existing tool-chain for inference sessions do not support 
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many hardware-related optimization knobs. They simply 
load a network specification file, parse it and execute it, and 
users get the output directly from their input, and this is 
convenient for end-users but challenging for optimization.

2.4  Optimizer in inference

Given the fact that end-user can not efficiently optimize the 
performance, the power consumption of the inference ses-
sion run on the specific hardware, these hardware vendors 
provide their own built-in optimizer to leverage the advan-
tage of the hardware. For example, the TensorRT conduct 
tensor and layer fusion/concatenation, kernel auto-tuning, 
memory allocation, etc. by their own algorithm (NVIDIA 
Corp 2020), as shown in Fig. 4. Among these optimiza-
tions, there are hardware-related parts, including memory 
allocation, tensor layout transformation. However, most of 

A Neural Network

Input Label

Output Label

Loss

CPU, GPU, FPGA, ASIC, ... (Any computation

resource available to researchers)

A Neural Network

Input

Output

Result send to

users

 Cloud Server

Xeon,TPU, 

Tesla V100, Tesla

T4, ...

...

...

Embedding System

FPGA,Tegra,

Cortex,...

Training Inference

Fig. 1  Training vs inference (Copeland 2020)

Table 1  Difference of frameworks

Framework Language File Format

TensorFlow Python .pb
PyTorch Python .pkl
Caffe C++ .caffemodel
MXNet Python .json .params
CNTK Python .model

Fig. 2  Cloud TPU usage
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the vendors do not expose their optimization algorithms or 
strategies, a lot of libraries, SDKs with high performance 
are well-tuned by a lot of human experts manually with 
considerable human input parameters. The details are not 
available to end-users. Besides, the vendors conduct deep 
optimization toward their own products with different algo-
rithms, which brings significant challenges in universality 
to the tool-chain design.

2.5  Cambricon MLU‑100 and Software

In this paper, we use Cambricon-MLU100 and correspond-
ing tool-chain, SDK, to study for a better way to program 
and optimize the inference session on specialized hardware. 
Cambricon MLU-100 is a dedicated deep learning accel-
erator designed by Cambricon Technologies, the chip sup-
port inference task. The hardware specifications are listed 
in Table 2.

Along with the hardware, the vendor also provides us 
with 2 sets of tool-chain. One is a high-level runtime library, 
and another is the operator-level SDK. The programming 
interface of the high-level runtime library is similar to TPU/
GPU mentioned before, as shown in Fig. 5 (The format of 
network file in cnrtLoadModel should be .cambri-
con, which can be converted from other format like .pb/.
caffemodel/.pkl by provided script).

However, the operator-level SDK supports common 
operators such as convolution, ReLU, vector scaling, Batch 
Normalization, etc., and in this research, we will mainly use 
operator-level to implement and optimize our tool-chain.

3  Why our tool‑chain necessary?

Although there are already a runtime library and an opera-
tor-level SDK to program the Cambricon MLU-100, many 
problems still exist in this model from actual performance 
to optimization, making it necessary to develop a tool-chain 
with acceptable performance, flexibility to optimize and con-
venience to program.

3.1  Performance

Currently, the provided runtime library called Cambricon 
Neuware RunTime supports the networks generated by vari-
ous frameworks. By receiving the network specification file 
in various formats as input, CNRT packs them into .cambri-
con file, load, and extract the interface function in the model 
and conduct the inference. However, as the selected standard 
of our research, network in ONNX format experience a sig-
nificant performance gap against networks in other formats, 
as shown in Fig. 6.

The inference performance of network files in ONNX 
file is lower than the performance of other frameworks, 

Fig. 3  TensorRT usage

Trained Neural Network

(Network structure and

weight, bias, etc.)

Optimization Process

Layer & Tensor

Fusion

Precision Adjust

Tensor Memory

Allocating

Kernel Auto-

Tuning

Multi-Stream

Execution

Optimized Inference

Session

Fig. 4  TensorRT workflow (NVIDIA Corp 2020)

Table 2  The MLU100 hardware specification

Item Descriptions

Core freq. 1GHz
Float perf. (FP16) 64 TFLOPS
Integer perf. (INT8) 128 TOPS
Memory size 8 GB
Memory bandwidth 102.4 GB/s
Memory bit width 256-bit
Host Interface PCIe 3.0x16
TDP 110 W
ECC Enabled Yes
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and since the runtime library abstracts all the detailed 
implementation, it’s hard to analyze the reason for the per-
formance gap and optimize it. As our assumption, since 
all the networks are packed into .cambricon format in 
advance, the gap between ONNX and other framework 
results from different translation and scheduling process. 
With the ability to access lower-level SDK, we should 
make up this gap.

3.2  Programming interface

As mentioned before, the provided runtime library is highly 
abstracted, leaving almost no optimization space to the user. 
Though with the provided operator-level SDK, user can con-
trol the behavior of the hardware at operator level and adjust 
the hyper settings include sparse mode, fusion scheme, core 
to use, etc. when constructing a network, this SDK con-
tains many fragmented codes for configuring the device, 
allocating the memory, initializing the stream, setting the 
timer, etc., as shown in Fig. 7 which account for executing 
a convolution operator. Most of the code account for pre-
running work, only line 28-30 account for actual inference. 
This annoys the programmer much when they want to build 
a network since many of the work is redundant. The work 
done from line 1–25 can be abstracted to a more convenient 
interface. It should be noted that currently, we are not able 
to program new operators given the existing SDKs.

Under this circumstance, we want to develop a set of tool-
chain with the proper balance between high-level abstract 
and low-level hardware specification, giving enough opti-
mization space to the user with the convenience of program-
ming guaranteed.

3.3  Optimization

To optimize the neural network inference, programmers 
mainly devote their effort in reducing the kernel launch, 
off-chip memory access to increase the FPS, and decrease 
the power consumption. The provided runtime library and 
operator-level SDK also provide some optimization knobs. 
However, they are not very convenient and flexible to use.

The optimization knobs provided by runtime library only 
contain binary selection between fusion/not fusion, sparse/

Fig. 5  CNRT usage

Fig. 6  Performance of various supported frameworks



338 Z. Liu et al.

1 3

not sparse. Moreover, once the choice has been made, the 
runtime library packs the original network specification file 
in other formats into .cambricon format with the selected 
setting, which means this static selection can not be changed 
once the network file is packed, which is not flexible enough. 
The algorithm of fusion/sparse optimization is also unavail-
able, making it barely impossible to do further optimization 
on the provided runtime library.

On the other hand, the optimization knobs provided by 
the operator-level SDK include detailed fusion schemes, 
selection of core to use (Model_Parallelism), spar-
sity, how to fuse layers (Fusion Scheme), etc., some of them 
are hardware-related optimization knob. Fusion scheme 
and Model_Parallelism are focused on in our imple-
mented tool-chain. However, to program and optimize on the 
original operator-level is also not very convenient because 
of many redundant statements as Figure 8 illustrated, line 
19-28 are responsible for configurations of fusion operator, 
which can be abstracted.

So, it is necessary to develop a tool-chain with a proper 
balance between software abstract and hardware specifica-
tion, by which programmer can optimize the inference ses-
sion more convenient. Moreover, the principle for optimiza-
tion is also necessary to guide the user on how to optimize 
the inference session on the hardware.

4  Our approach: Paleozoic

In this research, we develop the tool-chain named Paleozoic, 
stands for the lower but wider level of Cambrian in geo-
logical time. Our work is based on higher-level IR (ONNX) 
and lower-level IR (operator description), the tool-chain 
will generate C++ code based on using operator-level SDK 
directly from a network specification file in ONNX format, 
by which an inference session can be compiled by g++. 
Moreover, we integrate some optimization knobs support-
ing the user to conveniently optimize the inference session 
using their own findings, algorithm, etc. Figure 9 illustrate 
the structure of our research.

4.1  Front‑end

Our front-end is mainly responsible for parsing the network 
specification file into low lever operator descriptions in 
which it can match the interface of provided operator-level 
SDK.

First, our front-end only receive the network speci-
fication file in ONNX format, and the user can convert 
network specification files in other framework using the 
built-in API. Currently, most of the frameworks support 

Fig. 7  Code segment of running a convolution operator with CNML

Fig. 8  Code segment of running a fusion operator with CNML
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converting between ONNX and their own format. Part of 
the normative specification of the semantics of ONNX IR 
is shown in Table 3, to match the programming model of 
provided SDK, we design our own lower-level IR, also 
shown in Table 3.

In our IR, we expose several optimization knobs related 
to the hardware. It should be noted that there already exists 
a build-in ONNX library in Python supporting the parsing 
of network specification file in ONNX, but the support of 
operators is incomplete, including the lack of dilation in 
convolution. For end-users, they can easily optimize the 
model on F-Block level of fusion schemes and part of 
hyper-parameters. Besides, we reserve the optimization 
interface of some other hyper-parameters on Layer level.

In this work, we only use the front-end part of the 
TVM (TVM.Relay) to parse the network specifica-
tion file to lower level operator descriptors and network 

specifications. The reason for not integrating Cambricon 
MLU-100 to existing TVM backend is listed below:

• TVM backend applied GA to every nested loop in the 
network to find an optimal configuration, thus schedule 
the code with high efficiency. However, the provided 
SDKs of Cambricon MLU-100 does not support such a 
low level.

• We want to get a template C++ file that is convenient to 
debug and profiling, which is not very similar with the 
existing programming model of TVM.

With these reasons, we only use the TVM front-end as 
parser.

First, out front-end scan from the beginning of the net-
work specification file, acquiring the settings of type, param-
eters layer by layer. Also, the shape of tensors should be 
acquired for scheduler using. Since the shape of tensors run-
ning in the network depend on the shape of the input tensor 
and parameters of layers, and the network specification file 
does not contain information about the shape of tensors. 
So, after processing one layer, our front-end calculates the 
shape of the output tensor of the layer. Finally, the layers 
description of the network and shape of corresponding ten-
sors are pushed into a queue to be scheduled. There is also 
an optimization pipeline before scheduling, which will be 
mentioned in the following part (Fig. 10).

4.2  Back‑end

The back-end is the main part of our design. As mentioned 
in Sect. 3, existing tool-chain has inconvenience in both pro-
gramming interface and optimization knob. Moreover, it will 
be better if the gap between ONNX and other frameworks 
can be filled. So, we design the back-end model as following.

First, we decide to generate a template C++ file using the 
CNML SDK, which will be compiled to executable infer-
ence session later instead of directly execute the inference 

PyTorch
(.pkl)

Tensor Flow
(.pb)

Caffe
(.caffemodel)

...

High level IR (Open Neural Network eXchange, ONNX)

Low level IR (Operator Description)

Template C++ code (Using operator-level SDK)

Executable inference session

Front-end

Back-end

Fig. 9  Workflow of our tool-chain

Table 3  ONNX IR and our IR

Type Abstract Description Important fields

Model Top-level construct associating metadata with a graph ir_version, opset, graph
Op Set Explicitly naming the operator sets a model relies on opset_version, ops []

ONNX IR Graph Describing the dataflow of executing the model nodes [] . input, output
Node Describing the behaviour of a layer in the neural network op, attribute, in, out
Operator Explicitly declaring the used operators op_version, op_type
Model Describing the execution flow of the model ir_version, f_blocks[]
Op Set Explicitly naming the operator sets a model relies on opset_version, ops[]

Our IR F-Block One fusion block fusing multiple layers together layers[] , MP, in, out
Layer One single regular layer in the model op, MP, Sparsity, ..., in, out
Operator Describing the detail parameters of the operator op_type, attribute
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session from input network description files. In this way, 
the user can still conveniently run the inference session by 
simply compile the generated C++ file, or they can also 
adjust, debug, and conduct their own optimization on the 
C++ file. So, to make it convenient for users to operate on 
the template C++ file, we design a middle layer interface to 
invoke the CNML. Comparing to origin CNML SDK, we 
abstract the allocating of tensors into the constructor of one 
operator (layer) and configuring of parameters into a single 
function. The design of part of our middle layer interface is 
shown in Fig. 12 in UML format, and we are keeping sup-
porting other common operators currently, aiming to support 
state-of-the-art neural networks in CV, NLP.

The parameters of the layers in the network will be filled 
into the constructor and configuring function according to 
the descriptions of the layers in the queue pushed by the 
front-end. It should be noted that the provided CNML SDK 
does not originally support some operators so that we should 
find an equivalent implementation to guarantee the correct-
ness of the network. For example, given the means � and 
varance �2 , originally supported Batch_Normaliza-
tion compute the result as equation 1.

However, the Batch_Normalization in ResNet need 
to scale and shift its distribution after origin normaliza-
tion, as equation 2 added after equation 1 which is called 
Weighted_Batch_Normalization ans not supported 
originally by CNML SDK, so we combine a BN layer with 
a Scaling layer.

(1)x̂ ←
x − 𝜇

√

𝜎2 + 𝜖

In addition to Weighted_Batch_Normalization, 
there are some other operators should be substituded with 
equivalent operators including GEMM, LSTM cell, etc.

In terms of the programming interface, according to Fig-
ure 7, an operator should be compiled before it can run. 
Before actually compile the operator, there are several 
parameters can be optimized, including the core to be used 
(Model_Parallelism, in the following parts we use MP 
for short) and how to fuse the layer (layer fusion scheme). 
So, our designed middle interface reserves the programming 
interface for these two optimizations making it very con-
venient for users to optimize the network using their own 
algorithm. Figure 11 illustrates the usage of our program-
ming interface.

4.3  Optimizer

Once we get the operator description and network specifi-
cation (low-level IR) from high-level IR, we conduct the 
optimizing procedure. In this stage, the users can custom 
their own optimization algorithm with given optimization 
knobs, by which an optimized low-level IR can be achieved. 
Then, the template C++ code will be scheduled according to 
the optimized low-level IR. Once the scheduling parameters 
are determined in the optimization procedure, they will not 
change dynamically when executing.

As mentioned before, the highly abstracted runtime 
library is very convenient, but with very limited space 
to optimize. In contrast, the low-level SDK has a much 
larger optimization space that may contain better schedule 

(2)y ← 𝜔x̂ + 𝛽

Tensor Flow Caffe PyTorch ...

High-Level Differentiable IR

Tensor Expression and Optimization Search Space

LLVM, CUDA, Metal VTA

CPU GPU ... FPGA ASIC ...

Optimization

AutoTVM

Device Fleet

Fig. 10  TVM workflow (Chen et al. 2018)
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configuration, but with increasing complexity in both pro-
gramming and searching. However, with efficiency search 
algorithms proposed, including Reinforced-GA in Google 
REGAL (Paliwal et al. 2020), parallel simulated annealing 
algorithm in TVM (Chen et al. 2018) and even Google 
CP-SAT, an approximation solver for NP-hard constraint 
programming problem (Google 2020), the optimization 
space that human can process increase dramatically. So, 
our work is trying to expose the optimization space as 
large as possible with the convenience in programming 
reserved. Our back-end offers several optimizing knobs, 
and we will show them by actual code.

The first knob is called MP, representing the core to be 
used by every layer in an inference session. The Cambri-
con MLU-100 have 32 physical cores (Cambricon Tech-
nologies 2019a), which means MP can be selected from 
1 to 32.

The second knob is Fusion Scheme representing how 
to fuse the layers in the network to make use of data local-
ity, by which the off-chip memory access can be reduced 
so that the inference throughput can increase, however, 
fusion may also introduce redundant calculation (Ragan-
Kelley et al. 2013), making it a trade-off between reduced 
memory access and redundant calculation. And the trade-
off is designed by the users.

A fusion layer can also select its optimal MP, so that the 
joint optimization between MP and Fusion Scheme can be 
done. The actual code segment in Figure 13 shows that it is 
convenient to conduct optimization in MP and layer fusion 
in our back-end.

Since arbitry 2 layers can be fused into a fusion block, 
and every fusion block can be set a MP, the total optimi-
zation space is very huge, as shown in equation 3, where 
∏i

x=1
(n−x)

i!
 represent the selection of fusion scheme and 32i+1 

represent the selection of MP of every fusion block.

This optimization space is too big for users to conduct the 
brute search, for example, given a network with 32 layers, 
there are 3.79 × 10

38 potential combination of the settings. 
So, user-customized searching algorithms are necessary.

5  Evaluation

To evaluate our work, we mainly consider the convenience 
of programming and space for optimization, and our work 
will be compared with runtime library CNRT and operator 
level SDK CNML. The performance of optimization strate-
gies will not be evaluated. It should be noted that although 
there are many optimization knobs in the configuration file 
of CNRT, it only selects the network file matches human 
input settings. Once a network file is packed, users can not 
make any changes. We select raw performance, amount of 
code, and optimization knobs as our evaluation indices.

First, we evaluate the optimization knobs of various tool-
chain, as shown in Table 4. We are keeping supporting the 
operator, networks, and optimization knobs. Apart from 
Load Balance Mode, we reserve enough interface for spar-
sity and operator concatenation. They can respectively be 
configured in configLayer() stage and be implemented 
by ConcatLayer derived from Layer in Fig. 12. Com-
paring to runtime library CNRT, our backend offer much 
larger optimization space to search. However, larger space 
will result in increasing in complexity when program-
ming. So, it is necessary to evaluate the convenience of 
programming.

We evaluate the convenience of programming by count-
ing the line of code when programming various state-of-
the-art neural networks in the CV field. Together with the 
amount of code, we also evaluate the optimization space by 
counting the potential optimization combination. The cal-
culation of the amount of code ignores the code responsible 
for model loading. Table 5 shows the line of code of the 
file generated from the network specification file. Figure 14 
shows the ratio of the amount of code and corresponding 
optimization space. Our work reduces the line of code con-
siderably and thus reduces complexity when programming. 
In the meantime, we provide users with a huge optimization 
space.

An increased abstract layer may increase the overhead 
when calling and invoking, resulting in a decrease in 
performance. So, we also evaluate the performance of 
our back-end with no optimization and compare the gap 
between directly using operator level SDK CNML. Fig-
ure 15 illustrated the performance comparison between 

(3)Space(n) =

n−1
�

i=1

�

32
i+1 ×

∏i

x=1
(n − x)

i!

�

Fig. 11  Usage of our back-end
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Fig. 12  Part of interface design
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our work and operator level SDK CNML, where the gap is 
tiny, which means our abstract layer will not have a great 
negative influence on the performance.

It should be noted that any further optimization that 
will greatly influence the performance will be done by 
the users. Here we only dispel the misgivings of whether 
our back-end abstract will influence the performance and 
ignore the performance of runtime library CNRT since 
the optimization strategies inside CNRT are unavailable.

Finally, we evaluate the performance of our work 
by comparing it with NVIDIA RTX2080TI with Ten-
sorRT (NVIDIA Corp 2020, 2018), and hardware specifi-
cation of RTX 2080TI is listed in Table 6.

Table 7 provides the detailed description of deep neural 
network models used in our evaluation.

We also apply a straightforward optimization strategy to 
improve the performance of codes generated by our com-
piler tool-chain. According to Fig. 16, with TensorRT, 
RTX 2080TI has much better performance against Cam-
bricon MLU-100 with the existing tool-chain, with even 
half of the theoretical performance in single/half-precision 
floating computation.

By applying a simple strategy of Fusing all the layers 
into one block, and set a maximal MP , the performance 
of various models on MLU100 improves significantly, and 
our work has great potential one applying user-customized 
optimization strategies.

Combining Table 7 and Fig. 16, we have several find-
ings with our simple optimization strategy:

• For networks with low operation count per layer (e.g., 
ResNet and AlexNet), they can benefit a lot from layer 
fusion provided by our work (Comparing to the rules-
based fusion in TensorRT, which means one fusion 
block contain only one CONV at most).

• For mobileNet, although it has low operation count per 
layer, it uses depthwise separable convolution with dif-
ferent access patterns with low data reuse (Shao et al. 
2019; Sandler et al. 2018) compared to ordinary con-
volution, which need manually tunning of even lower-
level code than provided SDK. So, the fine-tunned Ten-
sorRT outperforms our work on mobileNet.

• For networks with less layer but much higher operation 
count per level (VGG-19), the negative influence of 
redundant operation brought by fusion is greater than 
the positive influence of locality, resulting in a lower 
performance compared to TensorRT.

Currently, we are studying a better optimization strategy 
for the Cambricon MLU100 accelerator.

Fig. 13  Code sample for setting MP and layer fusion of our back-end

Table 4  Supported optimization knobs

* � : Currently private, but interface reserved (Concat layer in Fig-
ure 12 and sparsity in configLayer())

CNRT CNML Our Work

Batch Size ✓ ✓ ✓

Load Balance Mode ✓ ✓ ×

Accuracy × ✓ ✓

Sparsity × ✓ �

Model Parallelism × ✓ ✓

Fusion × ✓ ✓

Concatation × ✓ �

Table 5  Line of code

CNRT CNML Our Work

ResNet-18 / 2491 485
ResNet-50 / 6225 1180
VGG-16 / 1387 260
VGG-19 / 1603 296
mobileNet / 5579 1053
AlexNet / 730 156
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6  Related work

To address the difficulties in programming the accelerator and 
optimize the code generated, researchers propose domain-spe-
cific language (DSL) to schedule the hardware code with high 
efficiency. The representative DSL include Halide (Ragan-
Kelley et al. 2013), Tensor Comprehension (Vasilache et al. 
2018). Originally, Halide is designed for image processing 
pipeline on NVIDIA GPU, similar to Diesel (Elango et al. 
2018), and Tensor Comprehension is designed for machine 
learning applications. DSLs will abstract complex control 
logic comparing to traditional language like C/C++/Java. 
For example, Tensor Comprehension will infer the loop 
bound automatically, making users free from deciding the 

Fig. 14  Comparsion of code 
amount and optimization space 
between existing tool-chain and 
our work

Fig. 15  Performance com-
parison between CNML and 
our work

Table 6  The RTX 2080TI hardware specification  (NVIDIA Corp 
2019)

Item Descriptions

Core freq. 1.35/1.55 GHz
Perf.(FP32) 13.4 TFLOPS
Perf.(FP64) 420 GFLOPS
Perf.(Tensor@INT4) 440 TOPS
Memory size 11 GB
Memory bit width 352 bit
Memory bandwidth 616 Gib/s
Host Interface PCIe 3.0x16
TDP 250 W

Table 7  Networks description 
(Op is in the unit of TOPs)

* With depthwise separable convolution

Network Total Op Avg. Op No. of CONV

ResNet-18/50 (He et al. 2016) 3.38/7.61 0.169/0.144 20/53
VGG-19 (Simonyan and Zisserman 2015) 36.34 2.27 16
AlexNet (Krizhevsky et al. 2012) 1.22 0.244 5
mobileNet* (Sandler et al. 2018) 10.33 0.199 52
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loop bound. Since neural network tasks have high similarity 
with image processing pipelines, currently, many program-
ming frameworks of neural networks are based on Halide IR, 
like TVM (Chen et al. 2018). TVM is proposed to address 
the problem of universality. To generate more efficient hard-
ware code, there are also several newly introduced schedule 
frameworks including FlexTensor (Zheng et al. 2020) as a 
back-end optimizer and TASO (Jia et al. 2019) as graph level 
optimizer. In this research, we are proposing a DSL for Cam-
bricon MLU100 with lower complexity and higher flexibility 
comparing to existing tool-chain. In addition to the avail-
ability of service to high performance, the robustness of the 
service is gaining increasing attention, including path-extract 
based adversarial defend (Qiu et al. 2019), task-level error 
recovery system in asymmetric architecture (Leng et al. 2020). 
To integrate these features into existing accelerators with high 
efficiency, the support of the compiler is necessary.

When it comes to optimization, many proposed hardware 
architecture designs are considering sparsity (Zhu et al 2019; 
Albericio et al. 2016), which should be combined with the 
sparse algorithm. Fusion are another general applied optimi-
zation method including loop fusion (Qiao et al. 2019), ker-
nel fusion (Wang et al. 2010). These fusion are mainly focus-
ing on CPU/GPU code. For specialized accelerators, few 
vendors expose their algorithms. In this work, we reserve 
the optimization interface of sparsity, fusion, and some other 
knobs, including tensor layout transformation (Kim et al. 
2019), accuracy adjusting to enable the users to apply their 
own optimization strategies.

7  Conclusion

In this paper, we propose a compiler tool-chain design for 
supporting the inference session of DNN models on the spe-
cialized accelerator Cambricon-MLU100. Our tool-chain 
includes a network parser, a code generator, and an opti-
mization interface. Combined together, it is able to take in 
ONNX-based network specification files and generate the 

corresponding C++ codes that wraps over the low-level 
operator library. Our tool-chain maintains the programmer-
friendly APIs that are similar to the high-level runtime 
library. Meanwhile, it also exposes the programming inter-
face for low-level optimization knobs such that the users can 
easily customize their own optimization strategies.
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