
DLFusion: An Auto-Tuning Compiler for Layer Fusion
on Deep Neural Network Accelerator

Zihan Liu, Jingwen Leng*, Quan Chen, Chao Li, Wenli Zheng, Li Li, Minyi Guo*
Emerging Parallel Computing Center, Department of Computer Science and Engineering

Shanghai Jiao Tong University
Shanghai, China

Email: {altair.liu, leng-jw}@sjtu.edu.cn, { chen-quan, lichao, zheng-wl, lilijp, guo-my } @cs.sjtu.edu.cn

Abstract—Many hardware vendors have introduced special-
ized deep neural networks (DNN) accelerators owing to their
superior performance and efficiency. As such, how to generate
and optimize the code for the hardware accelerator becomes
an important yet less explored problem. In this paper, we
perform the compiler-stage optimization study using a novel
and representative Cambricon DNN accelerator and demon-
strate that the code optimization knobs play an important
role in unleashing the potential of hardware computational
horsepower. However, even only two studied code optimization
knobs, namely the number of cores and layer fusion scheme,
present an enormous search space that prevents the naive
brute-force search. This work introduces a joint, auto-tuning
optimization framework to address this challenge. We first use
a set of synthesized DNN layers to study the interplay between
the hardware performance and layer characteristics. Based on
the insights, we extract the operation count and feature map
channel size as each layer’s characteristics and derive a joint
optimization strategy to decide the performance-optimal core
number and fusion scheme. We evaluate the performance of the
proposed approach using a set of representative DNN models
and show that it achieves the minimal of 3.6x and the maximal
of 7.9x performance speedup compared to no optimization
baseline. We also show that the achieved speedup is close to
the oracle case that is based on a reduced brute-force search
but with much less search time.

Keywords-Auto-Tuning;Layer Fusion;Hardware Accelerator;

I. INTRODUCTION

Deep learning has achieved great success in the key
application domains such as computer vision and natural-
language processing. The derived deep neural network
(DNN) models have significant requirement for computation
and memory resources, which exceed the capability of
the existing architectures. Owing to the repeated common
computation pattern in different DNN models, such as 2D
convolution and matrix multiplication, both the academia
and industry begin to embrace the specialized hardware ac-
celerators [14, 11, 18] for their high performance and energy
efficiency. Compared to the general-purpose architecture
like CPU/GPU, hardware accelerators are specialized for a

* Jingwen Leng and Minyi Guo are corresponding authors of this paper

specific task and have simplified control logic so that they
can dedicate more resources for computation and memory
structure [14]. Their design decision has also lead to their
distinctive programming models from the CPU/GPU.

General-purpose architectures have well-defined ISAs so
that the compiler can perform various performance opti-
mizations. However, optimizing the code for the hardware
accelerators is challenging because hardware vendors do not
expose the accelerator’s low-level ISA. Instead, hardware
vendors provide a SDK with high-level API for applica-
tion/model developers, but the SDK is highly abstracted
and difficult to control the exact hardware behavior. As
such, significant efforts are devoted in computational-graph
level optimization such as operator fusion, operator con-
catenation [3], and operator substitutions [10]. Nonetheless,
the graph-level optimization are independent of underlying
hardware, cannot be used to tune the performance for a
specific accelerator.

In this paper, we explore the code optimization for a novel
accelerator Cambricon MLU100 [27]. MLU100 has a higher
peak performance in FP16/INT8 than Tesla V100 [18], but
also requires highly optimized code to fully unleash its
computational horsepower. The accelerator SDK includes
both high-level and low-level APIs. The high-level APIs
are highly abstracted and have little optimization space. In
contrast, the low-level API exposes two execution hyper-
parameters, which are number of cores and layer fusion
schemes. Our characterization results show that we need
to carefully and wisely select those two parameters to
achieve the optimal performance for a specific DNN model.
However, even with only two parameters, the search space
is too large for a brute-force search.

On the basis of the low-level SDK, we propose
an compiler-stage auto-tuning optimizer, DLFusion, for
MLU100 accelerator which performs joint optimization for
the two exposed execution hyper-parameters. To the best of
our knowledge, this work is the first to consider arbitrary
auto-fusion patterns that are mathematically equivalent. In
contrast, existing fusion optimizations such as TensorRT
and XLA [17, 16] are rule-based and therefore can only
support a limited set of pre-defined fusion patterns. The

118

2020 IEEE Intl Conf on Parallel & Distributed Processing with Applications, Big Data & Cloud Computing, Sustainable
Computing & Communications, Social Computing & Networking (ISPA/BDCloud/SocialCom/SustainCom)

978-1-6654-1485-2/20/$31.00 ©2020 IEEE
DOI 10.1109/ISPA-BDCloud-SocialCom-SustainCom51426.2020.00041

20
20

 IE
EE

 In
tl

Co
nf

 o
n

Pa
ra

lle
l &

 D
ist

rib
ut

ed
 P

ro
ce

ss
in

g
w

ith
 A

pp
lic

at
io

ns
, B

ig
 D

at
a

&
 C

lo
ud

 C
om

pu
tin

g,
 S

us
ta

in
ab

le
 C

om
pu

tin
g

&
 C

om
m

un
ic

at
io

ns
, S

oc
ia

l C
om

pu
tin

g
&

 N
et

w
or

ki
ng

 (I
SP

A/
BD

Cl
ou

d/
So

ci
al

Co
m

/S
us

ta
in

Co
m

) |
 9

78
-1

-6
65

4-
14

85
-2

/2
0/

$3
1.

00
 ©

20
20

 IE
EE

 |
 D

O
I:

10
.1

10
9/

IS
PA

-B
DC

LO
U

D-
SO

CI
AL

CO
M

-S
U

ST
AI

N
CO

M
51

42
6.

20
20

.0
00

41

Authorized licensed use limited to: Shanghai Jiaotong University. Downloaded on April 28,2022 at 09:59:37 UTC from IEEE Xplore. Restrictions apply.

Performance	Analysis	
(Sec	II	&	III)

Theoretical
Roofline

Micro
Benchmark

Single-knob	Opt.
(Sec	IV.A)

API	InterfacePerformance
Model

Joint	Opt.
(Sec	IV.B	&	IV.C)

DLFusion
Algorithm

Single-knob
Opt.	features

Figure 1. Overall flow of the optimizer design in our work.

basic architecture of the optimizer is shown in Figure 1,
and this paper is organized as followed. In Section II, we
first show the performance gap between theoretical model
and actual execution using a series of micro-benchmark,
then we analyze the optimization knobs and performance in
detailed in Section III, by which we present our performance
model for later optimization. Moreover, we find it difficult
to achieve the optimal settings for different networks by
btute methods, so an auto-tunning optimization is necessary.
In Section IV.A, we first propose single knob optimization
for Model Parallelism using the aforementioned performance
model, then we integrate fusion scheme into the optimization
procedure guided by the insight of Section IV.B, finally, we
present our optimization algorithm and software implemen-
tation in Section IV.C.

II. INVESTIGATED PLATFORM

In this paper, we use Cambricon MLU-100-C3 [27], a
dedicated deep learning accelerator designed by Cambricon
Technologies. The MLU-100 can deliver the computing per-
formance with much better energy efficiency than general-
purpose processors like CPU and GPU. In this section, we
first give a brief introduction of the accelerator and then
conduct an analysis to reveal the factors that can impact the
accelerator’s performance efficiency.

A. Experimental Setup

1) Hardware Setup: Table I lists the detailed specifica-
tions of the studied Cambricon MLU100 accelerator. The
accelerator has 32 cores in total, where each core has the
computation power 1 TFLOPS in FP32, 2 TFLOPS in
FP16, and 4 TFLOPS in INT8. The accelerator can sup-
port common computation patterns in deep neural network
models, including the convolution layer, ReLU layer, and
batch normalization layer [27]. However, its core microar-
chitecture is not revealed, which we use a microbenchmark-
based methodology to study. With those auto-generated
microbenchmarks covering different computational intensity
and operation count, we can quickly have a high-level
understanding of the target hardware’s computational char-
acteristics. One of the salient features of our work is that,
for other accelerators with different microarchitectures, this
microbenchmark methodology can also be applied to reveal
hardware characteristics for optimization.

2) Software Setup: The chip vendor provides an operator-
level SDK and a high-level runtime library for programming
the accelerator. The operator-level SDK, called CNML,

Table I
THE MLU100 HARDWARE SPECIFICATION.

Item Descriptions
Core freq. 1GHz

Float perf. (FP16) 64 TFLOPS
Integer perf. (INT8) 128 TOPS

Memory size 8 GB
Memory bandwidth 102.4 GB/s
Memory bit width 256-bit

Host Interface PCIe 3.0x16
TDP 110 W

ECC Enabled Yes

/********************* Model Parallelism **********************/

cnmlBaseOp_t op;

// Configuring parameters, allocating memory, ...

cnmlCreateOperator(&op, ... /* operator specification */);

cnmlCompileOperator(&op, Model_Parallelism);

output = cnmlComputeOperatorForward(&op, input);

/*********************** Layer Fusion *************************/

cnmlBaseOp_t op_1, op_2;

cnmlFusionOp_t fusion_op;

// Configuring parameters, allocating memory, ...

cnmlCreateOperator(&op_1, ... /* operator 1 specification */);

cnmlCreateOperator(&op_2, ... /* operator 2 specification */);

cnmlFuseOperator(&op_1, &fusion_op);

cnmlFuseOperator(&op_2, &fusion_op);

cnmlCompileFusionOperator(&fusion_op, Model_Parallelism);

output = cnmlComputeFusionOperatorForward(&fusion_op, input);

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

Figure 2. SDK code sample for setting MP and layer fusion.

supports common operators such as convolution, ReLU,
and BatchNorm, which are used in computer vision and
natural language processing models. The CNML supports
two hyper-parameters for running those operators, as shown
in Figure 2. The first hyper-parameters is model parallelism
(MP), which specifies the number of cores (up to 32) used
by the operator. The second hyper-parameter is layer fusion,
which specifies the number of layers that are fused for
concurrent execution and therefore increased parallelism.
These two hyper-parameters can represent the execution of
fusion operation on multi-core architecture based acceler-
ators, and this optimization is orthogonal to other graph-
level optimizations including Common Subexpression Elim-
ination (CSE) [16], operator substitution [10], etc. In this
work, we use this operator-level SDK and tune the hyper-
parameter settings to optimize different DNN models.

B. Performance Analysis

We first construct a single-layer based microbenchmark
to study the accelerator’s performance efficiency for DNN
model layers with different characteristics. We focus on the
convolutional layer (Conv) and fully connected layer (FC)
because they represent most of the computation in today’s
DNN models [29]. For each layer, we sweep its differ-
ent parameters and compute their required operation count

119

Authorized licensed use limited to: Shanghai Jiaotong University. Downloaded on April 28,2022 at 09:59:37 UTC from IEEE Xplore. Restrictions apply.

through Equation 1 and 2 respectively. We first perform the
experiment using the single core and then multiple cores to
understand the impact of the core number on performance
efficiency.

GOPSConv ← 2×HOut∗WOut∗HK∗WK∗CIn∗COut (1)

GOPSFC ← 2×M ×K ×N (2)

1) Single-core Performance: We first use the simple
roofline model [31] to model the performance of convolution
and fully-connect layers under different parameters, and the
operation intensity is calculated as equation 3.

Intensity ← GOPS∑
(sizeof(tensors))

(3)

However, as shown in Figure 3, there’s significant gap

��-� ��-� ��� ��� ��� ��� ��� ��	

�%��#(�#' (+���%'���#'$&�� ,�

�

���

���

��

���

����

��
&�

$&
"

�#
��

���
��

�
��

�$$�! #��$����������*�'���()�!���&�$&"�#���

�$$�! #��$����"�& �$#��������
�$#*$!)($#���+�&
�)!!+��$##��(�����+�&

Figure 3. Roofline model of Cambricon MLU-100 and actual performance.

between the exact performance and theoritical performance
on Cambricon MLU-100, moreover, operation intensity in
roofline model can not distinct the performance of operations
under the same intensity effectively leading to the difficulty
in modeling the performance.

So, we applied PCA method to extract the parameters that
are most likely to influence the performance (by which we
can adjust the hardware resource assigned to the operation
and thus improve the performance), and for Cambricon
MLU-100, we found that operation count has the most
significant influence on the performance, and channel the
second.

Figure 4(a) shows the relationship between the layer’s op-
eration count and achieved performance efficiency measured
by GFLOPS (Giga floating-point operations per second), and
the operations with similar op count have similar perfor-
mance (the error bar stands for the standard diviation in
the figure is short). As Figure 4 shows, layers performance
efficiency is largely determined by its operation count: the
higher the operation count, the better performance efficiency
on the accelerator, and once the operation count reaches a
critical value, the performance will not increase. We called

it OpCountcritical and will be used in our optimization
process.

On the other hand, layers with medium and high intensity
exhibit a larger variability of performance efficiency for
the layers with the same operation count, according to the
PCA result, channel should be the main reason. To verify
the assumption, we observe the performance of convolution
layers with different channel/kernel size/output image size
with other parameters fixed. As shown in Figure 4(b), We
found that channel have non-negligible influence on layer’s
performance. Actually, the errorbar in Figure 4(a) is mainly
introduced by changing channel. For kernel size and feature
size, they contribute little to distinct the performance of
different layers, which match the result of PCA well. As
such, we also explore the setting of the parameters with
first and second largest influence according to PCA result:
channel of convolution.

2) Multi-core Performance: The above single-core per-
formance experiment shows that the operation count of a
layer impacts the accelerator performance efficiency. Based
on this observation, we further study the impact of the
number of cores with varying operation count. For this
experiment, we start with a fixed convolutional layer from
the VGG-19 model [26]: Input/Output Channel=64,
Output Size=224 × 224, Kernel Size=3 × 3, for
which we use the notation of {64, 64, 224 × 224, 3 × 3}
to represent its parameters in the following sections. We
increase the operation count of the layer via expanding the
Channel dimension by different factors. Figure 4(c) shows
that the layers with large operation count prefer a large
number of cores. Layers with small (moderate) operation
count prefer a small (moderate) core numbers to achieve
the best performance.

III. PERFORMANCE ANALYSIS OF OPTIMIZATION
KNOBS

After analyzing the performance features of the DNN
accelerator, we focus on the problem of achieving the best
performance for a give DNN model, i.e., lowest inference
latency. This section motivates the need for an auto-tuning
compiler by demonstrating that the hyper-parameter setting
for achieving the best performance for a given DNN model
is highly dependent on model characteristics.

In this work, we focus on the aforementioned two hyper-
parameters, namely model parallelism and layer
fusion for optimizing the performance of a DNN model
on the MLU-100 accelerator. For the convenience of the ex-
periment, we first study the two hyper-parameters separately.

A. Model Parallelism.

As we describe in Section II, model parallelism
(MP) represents the number of cores for running the
given DNN layer. We sweep this MP hyper-parameter for
different DNN models and show the results in Figure 5(a).

120

Authorized licensed use limited to: Shanghai Jiaotong University. Downloaded on April 28,2022 at 09:59:37 UTC from IEEE Xplore. Restrictions apply.

����� ���� ���� ����

����"�!����

�

���

���

���

���

����

��
��
��

�
��

��
���

�

��

��������������� ����������
��	��!����
����������!�� �!$
����"�������!�� �!$
��#������!�� �!$

����� ���� ���� ����

�%�&�(�$#��$)#(�����'

���

���

���

	��

��

���

���

��

���

��
&�
$&
"
�#
��
���

��
�
��

��&�$&"�#���*�(�������&�#(�%�&�"'�$(��&�%�&�"'���+����
���##�!��	
���##�!���
���##�!��
�
 �&#�!�'�,���+�
 �&#�!�'�,��	+	
 �&#�!�'�,��
+

���()&��'�,���	+�	
���()&��'�,����+��
���()&��'�,���
�+�
�

�� �� �� �� �� ��

�#��� ������ �!
���

����

����

����

����

����

��
 �
�

�
��

��

��

�
�
��

�� �� ����������#�"���� ��
�����#�"��#�"�������
�����#�"��#�"�������
�����#�"��#�"�������
�����#�"��#�"������	
�����#�"��#�"��������

Figure 4. (a) Single core performance of ops. (b) Influence convolution parameter with other parameters fixed. (c) Multi core performance of ops.

�� �� �� �� �� ��

�%���"�!���!"�#����

���

���

���

��	

��

���

�
!"
�
��
�(
��
��
�"
�!
"�

�
��

��"�!"�� ���!�������"� $����#�$$� ��� � �$&!"�#�
��#��$��

������
��'��$

�� �� �� �� ��

��������������"�

���

���

���

��	

��

���

�
��
�
��
�"
��

��
��
��
��

��
��

��

��� #	��	���	!�	��!�$
��� #��	���	��	!�	��!�$
��� #���������
!�
��!�$

Figure 5. (a) Optimal MP setting of different networks with all layers
sharing the same MP. (b) Optimal fusion block size of convolutions with
different parameters.

The results show that using the maximum number of cores
does not necessarily lead to the best performance. The
optimal core number for ResNet-18 and VGG-19 is 4 and
16, respectively. The reason is that when the MP is too
large, each core is dispatched with less number of operation
count, leading to net performance degradation. As such, it
is essential to find a method to set the optimal MP based
on the characteristic of different DNN models.

B. Layer Fusion.

This layer fusion hyper-parameter lets users combine
multiple layers into a single block, which has two benefits. It
first increases the concurrent operation count than the layer-
wise, no-fusion execution. Consider an example of fusing
two layers: the computation of the second layer can start
when the first layer’s output is partially available. It also
reduces the cost of off-chip memory round trip because the
output of a layer can be generated on-chip and immediately
reused.

Prior work like TVM [3] only considers the fusion of con-
volutional layers and other types of layers such as ReLu and
batch normalization. However, the vendor-provided CNML
programming frameworks supports the fusion of almost
arbitrary types and numbers of layers. One of the major
differences between our work and TVM is that we consider
multiple convolution layers in a fusion block. As a result,
the optimization space is much larger and therefore more
challenging.

To study its impact on the performance, we construct three
CNN models, each of which has 16 identical baseline Conv
layers. The three baseline layers, which are selected from
ResNet [8] and VGG [26], have parameters of {64, 64, 56×
56, 3× 3}, {256, 256, 56× 56, 3× 3}, and {512, 512, 28×
28, 3× 3}, respectively.

In this experiment, we sweep the fusion block size Bsize

for executing each CNN model, which leads to 16/Bsize

fused blocks. As Figure 5 shows, different models have
different optimal fusion block sizes. The reason is that
although layer fusion has two major benefits, it also involves
redundant computation that needs a careful trade-off. If the
fusion block size is too large, the redundant calculation will
even degrade the overall performance. As such, we must
also find a strategy to decide the optimal fusion scheme for
different CNN models.

C. Infeasibility of Brute-Force Search.

For the optimal performance, we must jointly consider
the fusion scheme and model parallelism, which leads to
a huge space that makes the brute-force search infeasible.

121

Authorized licensed use limited to: Shanghai Jiaotong University. Downloaded on April 28,2022 at 09:59:37 UTC from IEEE Xplore. Restrictions apply.

�� �� �� �� �� ��

�%���"� ��� "�#����

����

����

����

����

����

��
"�
 "
�
��

��
���

�
�
��

��"� "������ ���%�$��� "��&�$��#���� !�"�$� ��� %�$�
����%$�����������
��!�� %�$�����
����%$��������������!�� %�$�����
����%$����������	���!�� %�$�����

�� �� �� �� �� ��

�%���"� ��� "�#����

����

����

����

����

��
"�
 "
�
��

��
���

�
�
��

��"� "������ ��� �& �%$� ��'�$�������"��$���������
��������������!�� %�$���(
��������������!�� %�$���(
��������������!�� %�$��	(
�����������
��!�� %�$���(
�����������
��!�� %�$���(
�����������
��!�� %�$��	(

Figure 6. (a) Multi-core performance fixing operation count. (b) Multi-core
performance fixing channel.

Assume a CNN model with n layers, Equation 4 gives
the number of possible combinations for setting the two
hyper-parameters. When n equals 50, there are 8.17× 1075

possible combinations. Based on our experimental insights,
we propose an intelligent auto-tuning optimizer that uses the
inherent characteristics of CNN models to quickly identify
their hyper-parameter setting.

Space(n) =

n−1∑
i=1

(32i+1 ×
∏i

x=1(n− x)
i!

) (4)

IV. DLFUSION APPROACH

In this section, we present the design and implementation
of DLFusion, which jointly optimizes the two knobs, model
parallelism, MP and layer fusion, to maximize the infer-
ence performance of DNN models on the target MLU-100
accelerator. We first explain how to select the optimal MP
for a given DNN layer, and then explain how to determine
the layer fusion scheme for multiple layers based on their
characteristics. In the end, we formalize our optimization
algorithm and present its implementation details.

A. Single Layer MP

In Section II, we show that the operation count of the
Conv layer has a significant impact on its optimal MP.
However, operation count along can not be used for deciding

the layer’s optimal MP. In this subsection, we propose a joint
model that uses both the operation count and in/out channel
size of convolutional layers to determine the optimal MP
configuration for the Conv layer.

We conduct a more detailed MP impact analysis for three
different layers ({32, 32, 224 × 224, 3 × 3}, {64, 64, 112 ×
112, 3 × 3}, {128, 128, 56 × 56, 3 × 3}). In short, those
three layers have the same operation count but different
input/output channels. Figure 6(a) shows that those three
layers have different optimal MP values. This is because the
hardware partitions the tensor on channel dimension with
a certain minimal partition size. In addition, we also find
the operation count itself impacts the optimal MP values. As
Figure 6(b) shows, Conv layers with the same input/output
channel but different operation count have different optimal
MP values. Conv layers with fewer channels with high
operation count could prefer more cores than layers with
more channels but less operation count. Given those findings,
we use both a layer’s channel size (C in the formula) and
operation count to determine its optimal core number, as
shown in Equation 5, where α, β are hardware-tuned scaling
factors. We emperically decide the value of α and β for
MLU100 is 0.316 and 0.659 respectively according to the
weight result of PCA.

MP (C,OpCount) ∝ α× log2(C) + β × log2(OpCount)
(5)

B. Multiple Layers Fusion and MP

As presented in Section II, layer fusion can reduce the
data movement and increase the operation count dispatched
to cores to improve the performance. The fusion block
composed of multiple layers can also leverage multiple cores
to further reduce the latency. On the other hand, using
more mores for the fusion block also leads to redundant
computation owing to the halo effect of 2D-convolution
illustrated in Figure 7(a). Moreover, the redundant computa-
tion increases when the number of layers in the fusion block
grows, which means fusing more layers does not necessarily
improve the performance. To efficiently enable fusion into
our optimization procedure, we first present our insight using
several identical layers to illustrate the factors that influence
the performance of fusion blocks. Then, given the significant
layer heterogeneities in actual neural networks, we present
our DLFusion algorithm for joint optimization considering
both MP and fusion schemes.

1) Identical Layers: We use two different Conv lay-
ers and compare their performance when fusing 4 and
16 layers. Figure 7(b) shows the performance comparison
where Conv1 is {512, 512, 28 × 28, 3 × 3} and Conv2
is {512, 512, 14 × 14, 3 × 3}, they have 1.72 GOPs and
0.43 GOPs respectively. While fusing more layers for
Conv2 leads to better performance, the situation is opposite
for Conv1. The main reason is that when a large fusion

122

Authorized licensed use limited to: Shanghai Jiaotong University. Downloaded on April 28,2022 at 09:59:37 UTC from IEEE Xplore. Restrictions apply.

Redundant Calculation in Fusion Pipeline (Shaded Area)

Input

Core 1

Intermediate Output

Core 2

�� �� �� �� �� ��

�$���!� ��� !�"
���

����

����

����

����

����

	���

��
!�
 !
�
��

��

�

��
�
��

��!� !������ ���$"� ���� ��"�� �#������������!��#�� �%�
� �%���$"���	���&�!"
� �%���$"�������&�!"
� �%���$"���	���&�!"
� �%���$"�������&�!"

����� ���� ���� ����

'����"��!& %�����$

��	

���

��	

���

��	

���

�"
��
��
&"

�#
�%
�!
��
��
�
$%
�
!�
�&
$�!

����%�! ���%(�� �$"����&"�!���&$�! �� ���"��!& %��!#��
����
����
����
���

�"��#�%����

Figure 7. (a) Redundant computation in layer fusion [1]. (b) Fusing different CONV layers. (c) Relation between speed-up ratio and the cores used.

� � � � � 	
 � � �� �� �� �� �� �� �	 �
 �� �� ��

��-�'���

��

��

��

��

��

��

�
&)

 #
�"

��
�

�&) #�"����(�"��)����-�%*'��"�%')�#� $�$�),%'!(�
%$+(�%��������
%$+(�%����(��)���

��������	 ��������� ��������

���&�''�"�&
�

����

����

����

����

����

	���

���

�"
��

%�
"�

��
��

'�
"�

*
�(

&

�#��(&�#"
�(&�#"

��	

��

���

���

���

���

���

�$
��

��
($

�%
�'

�#

��%�#%!�"���#���(&�#"�� #���)�'�������%�"'����&�''�"�&�

Figure 8. (a) Optimal MP selected by our method in ResNet-18 [8]
and VGG-19 [26]. (b) Performance and the speed-up ratio of fusion block
containing convolutions with different optimal MP. Generally, we should
determine the optimal MP given the convolution layer parameters. However,
in this experiment, since we want to observe the influence of different
optimal MP of convolutions in a fusion block, we determine the MP first
and than determine the convolution parameters according to selected MP.

block uses more cores, it leads to the more redundant
computation. As shown in Figure 7(c), before reaching
the critical operation count, using fusion can deliver better
performance than not using fusion, since the single-core
performance increase rapidly before the critical point ac-
cording to Figure 3(b). Once exceeding the critical point,
the performance drops significantly due to the redundant
computation (and that’s why the single-core performance

is stable before and after the critical point because using
a single core will not introduce redundant computation). It
should be noted that when using more cores, the critical
value is slightly smaller also because of the redundant
computation account for more op count. Moreover, before
reaching the critical value, using more cores leads to better
performance since more parallelism can be leveraged. For
single-core, the improvement gained by fusion is mainly
from reduced memory round-trip. So, for layer fusion, we
should limit the size of fusion block close to but below
critical operation count of the cores to benefit the most from
parallelism and avoid unacceptable redundant computation.

2) Non-identical Layers: In the actual DNN models, we
find that the layers have different parameters that lead to
different optimal MP as shown in Figure 8(a). When fusing
layers with significant different optimal MPs into one block,
severe underperformance is observed as Figure 8(b). The
reason is that all layers in one fusion block will share
the same MP, which is only suitable for a small part
of layers in the block. Given this finding, we choose to
determine optimal MP of every single layer first to avoid this
underperformance for later joint optimization with fusion
(since we can gather layers with the same or similar optimal
MP together). Once the optimal MPs are determined, to
strike a balance between the increased operation count and
redundant computation in layer fusion, we use the following
heuristics. When performing layer fusion, we gradually fuse
layers until the operation count of fused layers is greater than
a preset threshold, which provides enough parallelism for the
hardware and bounds the amount of redundant computation.

C. Implementation
In this subsection, we first present the core of our work:

the DLFusion optimization algorithm, and then we introduce
how we implement and evaluate our algorithm on actual
hardware.

1) DLFusion Algorithm: The DLFusion optimization al-
gorithm aims to find a schedule with optimal MPs and
fusion schemes for the hardware. We use the pseudo-code
shown in Algorithm 1 for the joint optimization of fusion
scheme and optimal MP. Our algorithm requires the input

123

Authorized licensed use limited to: Shanghai Jiaotong University. Downloaded on April 28,2022 at 09:59:37 UTC from IEEE Xplore. Restrictions apply.

Algorithm 1 Finding fusion scheme and hyper-parameter setting
Input: onnx file, num of layers, OpCountcritical
Output: fusion partition index[], mp of fusionblock[]

1: function JOINTOPTFUSIONANDMP(onnx file, num of layer, OpCountcritical)
2: layers spec← [], sum Op← 0
3: current mp← 0, avg mp← 0, block size← 0
4: for i = 0→ num of layer do
5: layers spec[i]← Specification of ith layer interpreted by TVM.Relay
6: if layers spec[i].type = Convolution/Fully − Connected then
7: current mp← selection based on channel(major) and Op count(minor)
8: sum Op← sum Op+ operation count of ith layer
9: avg mp← avg mp+ current mp, block size← block size+ 1

10: end if
11: avg mp← avg mp

block size

12: if sum Op
avg mp ≥ OpCountcritical then

13: fusion partition index.push(i)
14: mp of fusionblock.push(2blog2(avg mp)c)
15: sum Op← 0, avg mp← 0, block size← 0
16: end if
17: end for
18: return fusion partition index,mp of fusionblock
19: end function

of ONNX-based neural network description files, number of
layers, and OpCountcritical, which is a tunable parameter
that represents the operation count required by a single core
to reach its peak performance. For MLU100, we choose
this parameter as 101.25GOPs as suggested in Figure 3(b)
and Figure 7(c). The interpreter first reads the network
parameters (Line 5). The algorithm then decides the optimal
MP for each CONV layer based on its channel dimension and
operation count (Line 8). The algorithm adds the current
layer into the fusion block. It calculates the current total op-
eration count and average MP for all the current fused layers
(Line 8 to 11). If the operation count dispatched to each
core exceeds the critical operation count OpCountcritical,
we stop the fusion for the current block and start a new
fusion block (Line 12 to 13). For the newly formed fusion
block, we decide its MP as the closed to average MP and
round it to 2n (Line 14 to 15). This process repeats until all
layers are processed.

2) DLFusion Compiler Tool Chain: To evaluate the
aforementioned optimization algorithm, we design and im-
plement a compiler tool-chain for Cambricon MLU-100.
Figure 9 shows the details of our framework containing code
generator and optimizer, which takes the input of ONNX
format based neural network description file and generates
the C++ code that leverages the MLU100’s operator-level
SDK CNML. The core in the framework is the optimizer,
which is a specialized instance of Figure 1 and includes
an optimization pass for tuning the execution parameters
according to the DNN model characteristics.

ONNX
Format Parser Optimizer Scheduler Compiler Executable

inferencing	session

Hardware	Analysis Single-Knob
Optimization Joint	Optimization

Hardware-related
description

Parameter	&	Fusion
setting

C++	code	based
on	CNML

Generator

Optimizer

Figure 9. Overall architecture of our framework.

The code generator produces the C++ source code based
on a template file to call the CNML library. The produced
source code can be compiled to the executable inference
session via the g++ compiler. In our work, we choose
the DNN format ONNX [19] because it is independent of
specific deep learning frameworks. We use the TVM [3] as
the parser to convert the ONNX-based network description
format to the TVM’s internal graph representation that the
following scheduler and optimizer use.

V. EVALUATION

In this section, we evaluate DLFusion using a set of rep-
resentative CNN models, including ResNet, VGG, AlexNet
and mobileNet, as listed in Table II. We focus on the infer-
ence and use the frame per second (FPS) as the performance
metric. To demonstrate the effectiveness of DLFusion, we
compare the performance of different optimization strate-
gies, including a reduced brute-force search strategy.

1) Evaluated Strategy: We evaluate different optimization
strategies that are listed in Table III. Strategy 1 referring to
no fusion and no model parallelism (MP = 1) is used as the
baseline. Both strategy 2 and 3 perform no fusion while the

124

Authorized licensed use limited to: Shanghai Jiaotong University. Downloaded on April 28,2022 at 09:59:37 UTC from IEEE Xplore. Restrictions apply.

������ ��&��'��� ��&��'��� � �*��' !#�� ���'�)�

�#��
�

��

���

���

���

���

���

���

���
��

%�
#%

!
�"

��
��

��
�'���
�'���
�'���
�'���
�'���
�'��	
�'��

�

�

�

�

�

	

�

�$
��

��
($

��
�'

�#

�!$%#)�!�"'���'�%�)�%�#(&�&'���&�#$'�!�+�'�#"�

Figure 10. Performance comparison of different optimization strategies.

Table II
NETWORKS DESCRIPTION.

Network Total Op Avg. Op No. of CONV
ResNet-18/50 [8] 3.38/7.61 0.169/0.144 20/53

VGG-19 [26] 36.34 2.27 16
AlexNet [12] 1.22 0.244 5

mobileNet [25] 10.33 0.199 52

Table III
DIFFERENT OPTIMIZATION STRATEGIES.

No. Strategy Name Description
1 Non-Optimization No fusion with MP = 1

2 Fixed MP No fusion,
all the layers have the same MP.

3 Dynamic MP No fusion,
each layer its own MP.

4 All Fusion & Max. MP All layers fused into one block,
MP is set to be maximal

5 Fusion & Fixed MP All layer fused to multiple
blocks (Alg. 1) with the same MP.

6 DLFusion
(Fusion & Dynamic MP)

Layer fused by Alg. 1
set MP for each fused block.

7 Brute-force Search Optimal performance.

former uses the same MP for all layers, and the latter uses
the layer-specific MP . Strategy 4 simply fuses all layers
and uses the maximal MP for the fused block. Strategy
5 uses Alg. 1 to fuse layers to multiple blocks and use a
single fixed MP for all blocks. In contrast, Strategy 6 uses
Alg. 1 to fuse layers and set a block-specific MP value for
each block. Strategy 7 represents the optimal performance
through a brute-force search that we detail later.

2) Performance Comparison: Figure 10 shows the per-
formance comparison of different optimization strategies.
Except for the oracle case (the last bar), DLFusion has
the best performance, which achieves a speedup of 3.6 -
7.9× against the baseline. Our algorithm leads to significant
performance improvement for the two following reasons.

First, each fusion block has a proper operation count that
gains plenty of parallelism while with acceptable redundant
computation. Second, the number of cores used in each
fusion block is also close to their optimal number of cores
that balances computation and memory access. The studied
CNN models have different performance trend over the
different optimization strategies, for which we make the
following observations.

• CNN models with low operation count per layer (e.g.,
ResNet and mobileNet) are not sensitive to MP optimiza-
tion because using more cores leads to less utilization
of each core. In contrast, the model with high operation
count per layers (e.g., VGG-19) benefits more from MP
optimization.

• CNN models with low operation count per layer (e.g.,
ResNet and mobileNet) benefits significantly from the
layer fusion optimization because layer fusion produces a
block with more operations, which results in performance
improvement. In contrast, the model with high operation
count per layers (e.g., VGG-19) benefits less from layer
fusion.

• With the increasing of the number of layers (from 4 CONV
layers in AlexNet to over 50 CONV layers in mobileNet
and ResNet-50), the model gets more sensitive to the
fusion strategy because of larger fusion scheme space.

3) Oracle Case: To evaluate the effectiveness of the
DLFusion approach, we design a feasible brute-force search
as the oracle case. As we explain in Section III, the hyper-
parameter space is too large for the brute-force search. We
reduce the search space based on the performance character-
ization analysis on the existing CNN models. First, we limit
the choice of MP from 1, 2, 3...32 to 1, 2, 4, 8, 12, 16, 24, 32.
Second, we limit the size of a fusion block to the multiple
of four. These two rules lead to acceptable search time. The
last column of each CNN model in Figure 10 represents

125

Authorized licensed use limited to: Shanghai Jiaotong University. Downloaded on April 28,2022 at 09:59:37 UTC from IEEE Xplore. Restrictions apply.

the oracle case achieved by our reduced brute-force search.
The performance between the DLFusion and the oracle case
is less than 10%. Meanwhile, with the increased number
of layers, this performance gap gets smaller. In general,
DLFusion achieves the performance that is close to the
oracle case, with much reduced search time (O(n), where n
is the number of layers).

VI. RELATED WORK

To address the difficulty in compiler tool-chain design and
optimization, researchers have proposed Domain Specific
Language (DSL) to schedule the hardware more efficiently.
Halide is a popular DSL for image processing pipelines [24],
and Taichi is proposed for CG processing [9]. DSLs are
concise by omitting control logic in the regular programming
language, which makes it more convenient for optimization.
Given the similarity between image processing pipeline and
DNN models, Halide-based compilation frameworks such
as TensorComprehension [29] and TVM [3] have been
proposed. Those frameworks target a general optimization
at the computation graph level. In contrast, DLFusion is
a hardware-specific optimization framework that can be
integrated as a backend for the graph-level frameworks.

Previous researchers have studied various general opti-
mizations, such as loop fusion [22] and kernel fusion [30,
21]. In the TensorComprehension [29] framework, fusion
is performed with the use of the polyhedral model [2].
TASO [10] explores the graph substitution optimization
using a cost-based backtracking search. Grappler [28] of
TensorFlow conducts a series of rule-based arithmetic trans-
formation, operation fusion. On the other hand, instead of
optimize the execution on single hardware, Google RE-
GAL [20] focus on the problem of scheduling the execution
on multiple hardware. Those optimizations work at the
graph-level and can be used for any hardware back-end.

Other possible optimization options for compilers include
batching [4], model sparsity [32, 6], and data movement
reduction between specialized hardware accelerators and
general purpose processors [7]. Besides performance opti-
mization, increasing efforts have been put on the robustness
of the DNN systems including Ptolemy, an architecture that
detect adversarial samples at inference time [5] based on
critical path method [23]. Other researchers have also ex-
plored traditional reliability on heterogeneous systems [13].
To generalize the compiling stage optimization to these
architectures is also an urgent need. DLFusion targets the
layer fusion optimization that is specific to DNN models
on a specific hardware accelerator, researchers have also
explored the programming framework of this accelerator that
support the optimization options with less code effort [15].
Prior work explores the layer fusion as an architecture
optimization [1] while we use it for compiler optimization.

VII. CONCLUSION

In this work, we propose an end-to-end code genera-
tor with optimizer for the DNN accelerator Cambricon-
MLU100, which is capable of generating optimized C++
code for a DNN model with ONNX format. We propose an
auto-tuning algorithm to jointly optimize the two execution
hyper-parameter (i.e., number of cores and layer fusion
scheme) to maximize the accelerator performance for a given
DNN model. The algorithm uses the operation count and
channel size as the features to decide the optimal core count
for each layer. It then gradually fuses layers into a block that
has just enough computation to fully utilize the hardware and
avoids excessive redundant computation. Evaluation shows
that our approach achieves almost the same performance of
the reduced brute-force search base oracle case, but with a
much less search time. To the best of our knowledge, our
work represents the first auto-tuning algorithm for a DNN
accelerator can we hope it can foster more research efforts
in this direction.

ACKNOWLEDGEMENT

We thank the anonymous reviewers for their constructive
feedback for improving the work. This work was sup-
ported by Major Scientific Research Project of Zhejiang
Lab (No.2019DB0ZX01) and the National Natural Science
Foundation of China (NSFC) grant (61702328, 61832006,
and 61972247). Any opinions, findings, and conclusion
in this paper are those of the authors only and do not
necessarily reflect the views of our sponsors.

REFERENCES

[1] Manoj Alwani et al. “Fused-layer CNN accelerators”.
In: 49th Annual IEEE/ACM International Symposium
on Microarchitecture. 2016.

[2] Uday Bondhugula et al. “A practical automatic poly-
hedral parallelizer and locality optimizer”. In: Pro-
ceedings of the Conference on Programming Lan-
guage Design and Implementation. 2008.

[3] Tianqi Chen et al. “TVM: An Automated End-to-End
Optimizing Compiler for Deep Learning”. In: 13th
USENIX Symposium on Operating Systems Design
and Implementation. 2018.

[4] W. Cui et al. “Ebird: Elastic Batch for Improving
Responsiveness and Throughput of Deep Learning
Services”. In: 2019 IEEE 37th International Confer-
ence on Computer Design (ICCD). 2019, pp. 497–
505. DOI: 10.1109/ICCD46524.2019.00075.

[5] Yiming Gan et al. “Ptolemy: Architecture Support for
Robust Deep Learning”. In: CoRR abs/2008.09954
(2020).

[6] Cong Guo et al. “Accelerating Sparse DNN Models
without Hardware-Support via Tile-Wise Sparsity”.
In: CoRR abs/2008.13006 (2020).

126

Authorized licensed use limited to: Shanghai Jiaotong University. Downloaded on April 28,2022 at 09:59:37 UTC from IEEE Xplore. Restrictions apply.

[7] Cong Guo et al. “Balancing Efficiency and Flexibility
for DNN Acceleration via Temporal GPU-Systolic
Array Integration”. In: 57th ACM/IEEE Design Au-
tomation Conference, DAC 2020, San Francisco, CA,
USA, July 20-24, 2020. IEEE, 2020, pp. 1–6.

[8] Kaiming He et al. “Deep Residual Learning for Image
Recognition”. In: 2016 IEEE Conference on Com-
puter Vision and Pattern Recognition. 2016.

[9] Yuanming Hu et al. “Taichi: a language for high-
performance computation on spatially sparse data
structures”. In: ACM Trans. Graph. 38.6 (2019),
201:1–201:16.

[10] Zhihao Jia et al. “TASO: optimizing deep learning
computation with automatic generation of graph sub-
stitutions”. In: Proceedings of the 27th ACM Sympo-
sium on Operating Systems Principles. 2019.

[11] Norman P. Jouppi et al. “In-Datacenter Performance
Analysis of a Tensor Processing Unit”. In: Proceed-
ings of the 44th Annual International Symposium on
Computer Architecture. 2017.

[12] A. Krizhevsky et al. “ImageNet Classification with
Deep Convolutional Neural Networks”. In: Adv. in
Neural Info. Proc. Systems. 2012.

[13] Jingwen Leng et al. “Asymmetric Resilience: Ex-
ploiting Task-Level Idempotency for Transient Error
Recovery in Accelerator-Based Systems”. In: IEEE
International Symposium on High Performance Com-
puter Architecture, HPCA 2020, San Diego, CA, USA,
February 22-26, 2020. IEEE, 2020, pp. 44–57.

[14] Dao-Fu Liu et al. “PuDianNao: A Polyvalent Ma-
chine Learning Accelerator”. In: Proceedings of the
International Conference on Architectural Support
for Programming Languages and Operating Systems.
2015.

[15] Zihan Liu et al. “Survey and design of paleozoic:
a high-performance compiler tool chain for deep
learning inference accelerator”. In: CCF Trans. of
High Performance Computing (2020).

[16] Ruben Mayer, Christian Mayer, and Larissa Laich.
“The TensorFlow Partitioning and Scheduling Prob-
lem: It’s the Critical Path!” In: abs/1711.01912
(2017).

[17] NVIDIA. NVIDIA TensorRT: Programmable Infer-
ence Accelerator. 2020.

[18] NVIDIA. Tesla V100 Performance Guide. 2018.
[19] ONNX. Open Neural Network Exchange. The open

standard for machine learning interoperability. http:
//onnx.ai. Accessed Jun. 29, 2020.

[20] Aditya Paliwal et al. “Reinforced Genetic Algorithm
Learning for Optimizing Computation Graphs”. In:
8th International Conference on Learning Represen-
tations, ICLR 2020, Addis Ababa, Ethiopia, April 26-
30, 2020. 2020.

[21] Bo Qiao et al. “Automatic Kernel Fusion for Image
Processing DSLs”. In: Proceedings of the 21st In-
ternational Workshop on Software and Compilers for
Embedded Systems. 2018.

[22] Bo Qiao et al. “From Loop Fusion to Kernel Fusion:
A Domain-Specific Approach to Locality Optimiza-
tion”. In: IEEE/ACM International Symposium on
Code Generation and Optimization. 2019.

[23] Yuxian Qiu et al. “Adversarial Defense Through
Network Profiling Based Path Extraction”. In: IEEE
Conference on Computer Vision and Pattern Recog-
nition, CVPR 2019, Long Beach, CA, USA, June 16-
20, 2019. Computer Vision Foundation / IEEE, 2019,
pp. 4777–4786.

[24] J. Ragan-Kelley et al. “Halide: a language and com-
piler for optimizing parallelism, locality, and recom-
putation in image processing pipelines”. In: Confer-
ence on Programming Language Design and Imple-
mentation. 2013.

[25] M. Sandler et al. “MobileNetV2: Inverted Residuals
and Linear Bottlenecks”. In: Conference on Computer
Vision and Pattern Recognition. 2018.

[26] Karen Simonyan and Andrew Zisserman. “VVGGery
Deep Convolutional Networks for Large-Scale Image
Recognition”. In: 3rd International Conference on
Learning Representations. 2015.

[27] Cambricon Technologies. Cambricon MLU100
Datasheet. Aug. 2019.

[28] TensorFlow. TensorFlow graph optimization with
Grappler. https : / / www . tensorflow . org / guide /
graph optimization. Access Jun. 29, 2020.

[29] N. Vasilache et al. “Tensor Comprehensions:
Framework-Agnostic High-Performance Machine
Learning Abstractions”. In: CoRR 1802.04730
(2018).

[30] Guibin Wang, Yisong Lin, and Wei Yi. “Kernel Fu-
sion: An Effective Method for Better Power Efficiency
on Multithreaded GPU”. In: 2010 IEEE/ACM Int’l
Conference on Green Computing and Communica-
tions. 2010.

[31] Samuel Williams, Andrew Waterman, and David A.
Patterson. “Roofline: an insightful visual performance
model for multicore architectures”. In: Commun.
ACM 52.4 (2009), pp. 65–76. DOI: 10.1145/1498765.
1498785.

[32] Xuda Zhou et al. “Cambricon-S: Addressing Irregu-
larity in Sparse Neural Networks through A Cooper-
ative Software/Hardware Approach”. In: 51st Annual
IEEE/ACM International Symposium on Microarchi-
tecture, MICRO 2018, Fukuoka, Japan, October 20-
24, 2018. IEEE Computer Society, 2018, pp. 15–28.

127

Authorized licensed use limited to: Shanghai Jiaotong University. Downloaded on April 28,2022 at 09:59:37 UTC from IEEE Xplore. Restrictions apply.

